Advertisement

Nano Research

, Volume 12, Issue 5, pp 1105–1113 | Cite as

High areal capacity flexible sulfur cathode based on multi-functionalized super-aligned carbon nanotubes

  • Lujie Jia
  • Jian Wang
  • Zijin Chen
  • Yipeng Su
  • Wei Zhao
  • Datao Wang
  • Yang Wei
  • Kaili Jiang
  • Jiaping Wang
  • Yang Wu
  • Jia Li
  • Wenhui Duan
  • Shoushan Fan
  • Yuegang ZhangEmail author
Research Article

Abstract

Rational design of a robust carbon matrix has a profound impact on the performance of flexible/wearable lithium/sulfur batteries. Herein, we demonstrate a freestanding three-dimensional super-aligned carbon nanotube (SACNT) matrix reinforced with a multi-functionalized carbon coating for flexible, high-areal sulfur loading cathode. By employing the sulfur/nitrogen co-doped carbon (SNC) “glue”, the joints in the SACNT scaffold are tightly welded together so that the overall mechanical strength of the electrode is significantly enhanced to withstand the repeated bending as well as the volume change during operation. The SNC also shows intriguing catalytic effect that lowers the energy barrier of Li ion transport, propelling a superior redox conversion efficiency. The resulting binder-free and current collector-free sulfur cathode exhibits a high reversible capacity of 1,079 mAh·g−1 at 1 C, a high-rate capacity of ∼ 800 mAh·g−1 at 5 C, and an average capacity decay rate of 0.037% per cycle at 2 C for 1,500 cycles. Impressively, a large-areal flexible Li/S pouch cell based on such mechanically robust cathode exhibits excellent capacity retention under arbitrary bending conditions. With a high areal sulfur loading of 7 mg·cm−2, the large-areal flexible cathode delivers an outstanding areal capacity of 6.3 mAh·cm−2 at 0.5 C (5.86 mA·cm−2), showing its promise for realizing practical high energy density flexible Li/S batteries.

Keywords

lithium/sulfur battery flexible electrode multi-functional carbon glue high areal capacity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

We thank Qingyu Zhao and Ke Zhang for the support in the material preparation and characterization. This work was financially supported by the National Key R&D Program of China (No. 2016YFB0100100); the National Natural Science Foundation of China (Nos. 21433013 and U1832218); CAS-Queensland Collaborative Science Fund (No. 121E32KYSB20160032) and the CAS-DOE Joint Research Program (No. 121E32KYSB20150004).

Supplementary material

Supplementary material, approximately 12.4 MB.

12274_2019_2356_MOESM2_ESM.pdf (4.8 mb)
High areal capacity flexible sulfur cathode based on multi-functionalized super-aligned carbon nanotubes

References

  1. [1]
    Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.CrossRefGoogle Scholar
  2. [2]
    Liu, M. N.; Ye, F. M.; Li, W. F.; Li, H. F.; Zhang, Y. G. Chemical routes toward long-lasting lithium/sulfur cells. Nano Res. 2016, 9, 94–116.CrossRefGoogle Scholar
  3. [3]
    Liang, J.; Sun, Z. H.; Li, F.; Cheng, H. M. Carbon materials for Li-S batteries: Functional evolution and performance improvement. Energy Storage Mater. 2016, 2, 76–106.CrossRefGoogle Scholar
  4. [4]
    Ji, X. L.; Nazar, L. F. Advances in Li-S batteries. J. Mater. Chem. 2010, 20, 9821–9826.CrossRefGoogle Scholar
  5. [5]
    Bruce, P. G. Energy storage beyond the horizon: Rechargeable lithium batteries. Solid State Ionics 2008, 179, 752–760.CrossRefGoogle Scholar
  6. [6]
    Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithiumsulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.CrossRefGoogle Scholar
  7. [7]
    He, G.; Ji, X. L.; Nazar, L. High “C” rate Li-S cathodes: Sulfur imbibed bimodal porous carbons. Energy Environ. Sci. 2011, 4, 2878–2883.CrossRefGoogle Scholar
  8. [8]
    Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.CrossRefGoogle Scholar
  9. [9]
    Ji, L. W.; Rao, M. M.; Aloni, S.; Wang, L.; Cairns, E. J.; Zhang, Y. G. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci. 2011, 4, 5053–5059.CrossRefGoogle Scholar
  10. [10]
    Zheng, G. Y.; Zhang, Q. F.; Cha, J. J.; Yang, Y.; Li, W. Y.; Seh, Z. W.; Cui, Y. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett. 2013, 13, 1265–1270.CrossRefGoogle Scholar
  11. [11]
    Li, M. Y.; Carter, R.; Douglas, A.; Oakes, L.; Pint, C. L. Sulfur vapor-infiltrated 3D carbon nanotube foam for binder-free high areal capacity lithium-sulfur battery composite cathodes. ACS Nano 2017, 11, 4877–4884.CrossRefGoogle Scholar
  12. [12]
    Hwang, J. Y.; Kim, H. M.; Lee, S. K.; Lee, J. H.; Abouimrane, A.; Khaleel, M. A.; Belharouak, I.; Manthiram, A.; Sun, Y. K. High-energy, high-rate, lithium-sulfur batteries: Synergetic effect of hollow TiO2-webbed carbon nanotubes and a dual functional carbon-paper interlayer. Adv. Energy Mater. 2016, 6, 1501480.CrossRefGoogle Scholar
  13. [13]
    Ji, L. W; Rao, M. M; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522–18525.CrossRefGoogle Scholar
  14. [14]
    Qiu, Y. C.; Li, W. F.; Li, G. Z.; Hou, Y.; Zhou, L. S.; Li, H. F.; Liu, M. N.; Ye, F. M.; Yang, X. W.; Zhang, Y. G. Polyaniline-modified cetyltrimethylammonium bromide-graphene oxide-sulfur nanocomposites with enhanced performance for lithium-sulfur batteries. Nano Res. 2014, 7, 1355–1363.CrossRefGoogle Scholar
  15. [15]
    Qiu, Y. C.; Li, W. F.; Zhao, W.; Li, G. Z.; Hou, Y.; Liu, M. N.; Zhou, L. S.; Ye, F. M.; Li, H. F.; Wei, Z. H. et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 2014, 14, 4821–4827.CrossRefGoogle Scholar
  16. [16]
    Song, M. K.; Zhang, Y. G.; Cairns, E. J. A long-life, high-rate lithium/sulfur cell: A multifaceted approach to enhancing cell performance. Nano Lett. 2013, 13, 5891–5899.CrossRefGoogle Scholar
  17. [17]
    Wang, J.; Cheng, S.; Li, W. F.; Jia, L. J.; Xiao, Q. B.; Hou, Y.; Zheng, Z. Z.; Li, H. F.; Zhang, S.; Zhou, L. S. et al. Robust electrical “highway” network for high mass loading sulfur cathode. Nano Energy 2017, 40, 390–398.CrossRefGoogle Scholar
  18. [18]
    Wang, J.; Cheng, S.; Li, W. F.; Zhang, S.; Li, H. F.; Zheng, Z. Z.; Li, F. J.; Shi, L. Y.; Lin, H. Z.; Zhang, Y. G. Simultaneous optimization of surface chemistry and pore morphology of 3D graphene-sulfur cathode via multi-ion modulation. J. Power Sources 2016, 321, 193–200.CrossRefGoogle Scholar
  19. [19]
    Zhou, G. M.; Paek, E.; Hwang, G. S.; Manthiram, A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 2015, 6, 7760.CrossRefGoogle Scholar
  20. [20]
    Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem., Int. Ed. 2011, 50, 5904–5908.CrossRefGoogle Scholar
  21. [21]
    Wang, J.; Yang, J.; Xie, J.; Xu, N. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Adv. Mater. 2002, 14, 963–965.CrossRefGoogle Scholar
  22. [22]
    Duan, L.; Lu, J. C.; Liu, W. Y.; Huang, P.; Wang, W. S.; Liu, Z. C. Fabrication of conductive polymer-coated sulfur composite cathode materials based on layer-by-layer assembly for rechargeable lithium-sulfur batteries. Colloid. Surface. A Physicochem. Eng. Aspects 2012, 414, 98–103.CrossRefGoogle Scholar
  23. [23]
    Peng, H. J.; Huang, J. Q.; Zhang, Q. A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries. Chem. Soc. Rev. 2017, 46, 5237–5288.CrossRefGoogle Scholar
  24. [24]
    Park, J.; Yu, B. C.; Park, J. S.; Choi, J. W.; Kim, C.; Sung, Y. E.; Goodenough, J. B. Tungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li-S battery. Adv. Energy Mater. 2017, 7, 1602567.CrossRefGoogle Scholar
  25. [25]
    Luo, S. W.; Yao, M. J.; Lei, S.; Yan, P. Z.; Wei, X.; Wang, X. T.; Liu, L. L.; Niu, Z. Q. Freestanding reduced graphene oxide-sulfur composite films for highly stable lithium-sulfur batteries. Nanoscale 2017, 9, 4646–4651.CrossRefGoogle Scholar
  26. [26]
    Xiao, P. T.; Bu, F. X.; Yang, G. H.; Zhang, Y.; Xu, Y. X. Integration of graphene, nano sulfur, and conducting polymer into compact, flexible lithium-sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices. Adv. Mater. 2017, 29, 1703324.CrossRefGoogle Scholar
  27. [27]
    Yu, M. P.; Ma, J. S.; Xie, M.; Song, H. Q.; Tian, F. Y.; Xu, S. S.; Zhou, Y.; Li, B.; Wu, D.; Qiu, H. et al. Freestanding and sandwich-structured electrode material with high areal mass loading for long-life lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1602347.CrossRefGoogle Scholar
  28. [28]
    Su, D. W.; Cortie, M.; Wang, G. X. Fabrication of N-doped graphene-carbon nanotube hybrids from Prussian blue for lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1602014.CrossRefGoogle Scholar
  29. [29]
    Ding, Y. L.; Kopold, P.; Hahn, K.; van Aken, P. A.; Maier, J.; Yu, Y. Facile solid-state growth of 3D well-interconnected nitrogen-rich carbon nanotube-graphene hybrid architectures for lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 1112–1119.CrossRefGoogle Scholar
  30. [30]
    Liu, X. Y.; Huang, W. L.; Wang, D. D.; Tian, J. H.; Shan, Z. Q. A nitrogen-doped 3D hierarchical carbon/sulfur composite for advanced lithium sulfur batteries. J. Power Sources 2017, 355, 211–218.CrossRefGoogle Scholar
  31. [31]
    Tang, C.; Zhang, Q.; Zhao, M. Q.; Huang, J. Q.; Cheng, X. B.; Tian, G. L.; Peng, H. J.; Wei, F. Nitrogen-doped aligned carbon nanotube/graphene sandwiches: Facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries. Adv. Mater. 2014, 26, 6100–6105.CrossRefGoogle Scholar
  32. [32]
    Fu, Y. Z.; Su, Y. S.; Manthiram, A. Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes. Angew. Chem., Int. Ed. 2013, 52, 6930–6935.CrossRefGoogle Scholar
  33. [33]
    Zhou, G. M.; Wang, D. W.; Li, F.; Hou, P. X.; Yin, L. C.; Liu, C.; Lu, G. Q.; Gentle, I. R.; Cheng, H. M. A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries. Energy Environ. Sci. 2012, 5, 8901–8906.CrossRefGoogle Scholar
  34. [34]
    Sun, L.; Li, M. Y.; Jiang, Y.; Kong, W. B.; Jiang, K. L.; Wang, J. P.; Fan, S. S. Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries. Nano Lett. 2014, 14, 4044–4049.CrossRefGoogle Scholar
  35. [35]
    Kong, W. B.; Sun, L.; Wu, Y.; Jiang, K. L.; Li, Q. Q.; Wang, J. P.; Fan, S. S. Binder-free polymer encapsulated sulfur-carbon nanotube composite cathodes for high performance lithium batteries. Carbon 2016, 96, 1053–1059.CrossRefGoogle Scholar
  36. [36]
    Jin, K. K.; Zhou, X. F.; Zhang, L. Z.; Xin, X.; Wang, G. H.; Liu, Z. P. Sulfur/carbon nanotube composite film as a flexible cathode for lithium-sulfur batteries. J. Phys. Chem. C 2013, 117, 21112–21119.CrossRefGoogle Scholar
  37. [37]
    Jiang, K. L.; Li, Q. Q.; Fan, S. S. Nanotechnology: Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.CrossRefGoogle Scholar
  38. [38]
    Liu, K.; Sun, Y. H.; Chen, L.; Feng, C.; Feng, X. F.; Jiang, K. L.; Zhao, Y. G.; Fan, S. S. Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 2008, 8, 700–705.CrossRefGoogle Scholar
  39. [39]
    Liu, K.; Jiang, K.; Wei, Y.; Ge, S.; Liu, P.; Fan, S. Controlled termination of the growth of vertically aligned carbon nanotube arrays. Adv. Mater. 2007, 19, 975–978.CrossRefGoogle Scholar
  40. [40]
    Wang, K.; Wu, Y.; Luo, S.; He, X. F.; Wang, J. P.; Jiang, K. L.; Fan, S. S. Hybrid super-aligned carbon nanotube/carbon black conductive networks: A strategy to improve both electrical conductivity and capacity for lithium ion batteries. J. Power Sources 2013, 233, 209–215.CrossRefGoogle Scholar
  41. [41]
    Luo, S.; Wang, K.; Wang, J. P.; Jiang, K. L.; Li, Q. Q.; Fan, S. S. Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries. Adv. Mater. 2012, 24, 2294–2298.CrossRefGoogle Scholar
  42. [42]
    Kong, W. B.; Yan, L. J.; Luo, Y. F.; Wang, D. T.; Jiang, K. L.; Li, Q. Q.; Fan, S. S.; Wang, J. P. Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li-S batteries. Adv. Funct. Mater. 2017, 27, 1606663.CrossRefGoogle Scholar
  43. [43]
    Wang, K.; Wu, Y.; Wu, H. C.; Luo, Y. F.; Wang, D. T.; Jiang, K. L.; Li, Q. Q.; Li, Y. D.; Fan, S. S.; Wang, J. P. Super-aligned carbon nanotube films with a thin metal coating as highly conductive and ultralight current collectors for lithium-ion batteries. J. Power Sources 2017, 351, 160–168.CrossRefGoogle Scholar
  44. [44]
    Wang, K.; Luo, S.; Wu, Y.; He, X. F.; Zhao, F.; Wang, J. P.; Jiang, K. L.; Fan, S. S. Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Adv. Funct. Mater. 2013, 23, 846–853.CrossRefGoogle Scholar
  45. [45]
    Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.CrossRefGoogle Scholar
  46. [46]
    Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682.CrossRefGoogle Scholar
  47. [47]
    Tao, X. Y.; Wang, J. G.; Liu, C.; Wang, H. T.; Yao, H. B.; Zheng, G. Y.; Seh, Z. W.; Cai, Q. X.; Li, W. Y.; Zhou, G. M. et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 2016, 7, 11203.CrossRefGoogle Scholar
  48. [48]
    Xiang, M. W.; Wu, H.; Liu, H.; Huang, J.; Zheng, Y. F.; Yang, L.; Jing, P.; Zhang, Y.; Dou, S. X.; Liu, H. A flexible 3D multifunctional MgO-decorated carbon foam@CNTs hybrid as self-supported cathode for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2017, 27, 1702573.CrossRefGoogle Scholar
  49. [49]
    Sun, H. T; Mei, L.; Liang, J. F.; Zhao, Z. P.; Lee, C.; Fei, H. L.; Ding, M. N.; Lau, J.; Li, M. F.; Wang, C. et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 2017, 356, 599–604.CrossRefGoogle Scholar
  50. [50]
    Li, X. N.; Liang, J. W.; Zhang, K. L.; Hou, Z. G.; Zhang, W. Q.; Zhu, Y. C.; Qian, Y. T. Amorphous S-rich S1−xSex/C (x ≤ 0.1) composites promise better lithium.sulfur batteries in a carbonate-based electrolyte. Energy Environ. Sci. 2015, 8, 3181–3186.CrossRefGoogle Scholar
  51. [51]
    Sun, K.; Zhang, Q.; Bock, D. C.; Tong, X.; Su, D.; Marschilok, A. C.; Takeuchi, K. J.; Takeuchi, E. S.; Gan, H. Interaction of TiS2 and sulfur in Li-S battery system. J. Electrochem. Soc. 2017, 164, A1291–A1297.CrossRefGoogle Scholar
  52. [52]
    Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2-TiN heterostructures enabling smooth trapping.diffusion.conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694–1703.CrossRefGoogle Scholar
  53. [53]
    Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845.CrossRefGoogle Scholar
  54. [54]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  55. [55]
    Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.CrossRefGoogle Scholar
  56. [56]
    Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.CrossRefGoogle Scholar
  57. [57]
    Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.CrossRefGoogle Scholar
  58. [58]
    Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496–11500.CrossRefGoogle Scholar
  59. [59]
    Pang, Q.; Tang, J. T.; Huang, H.; Liang, X.; Hart, C.; Tam, K. C.; Nazar, L. F. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries. Adv. Mater. 2015, 27, 6021–6028.CrossRefGoogle Scholar
  60. [60]
    Liu, S. H.; Li, J.; Yan, X.; Su, Q. F.; Lu, Y. H.; Qiu, J. S.; Wang, Z. Y.; Lin, X. D.; Huang, J. L.; Liu, R. L. et al. Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium-sulfur batteries. Adv. Mater. 2018, 30, 1706895.CrossRefGoogle Scholar
  61. [61]
    Al Salem, H.; Babu, G.; Rao, C. V.; Arava, L. M. R. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries. J. Am. Chem. Soc. 2015, 137, 11542–11545.CrossRefGoogle Scholar
  62. [62]
    Huang, K.; Bi, K.; Liang, C.; Lin, S.; Zhang, R.; Wang, W. J.; Tang, H. L.; Lei, M. Novel VN/C nanocomposites as methanol-tolerant oxygen reduction electrocatalyst in alkaline electrolyte. Sci. Rep. 2015, 5, 11351.CrossRefGoogle Scholar
  63. [63]
    Zhang, L.; Sun, D.; Feng, J.; Cairns, E. J.; Guo, J. H. Revealing the electrochemical charging mechanism of nanosized Li2S by in situ and operando X-ray absorption spectroscopy. Nano Lett. 2017, 17, 5084–5091.CrossRefGoogle Scholar
  64. [64]
    Li, P.; Shao, L. Y.; Wang, P. F.; Zheng, X.; Yu, H. X.; Qian, S. S.; Shui, M.; Long, N. B.; Shu, J. Lithium sodium vanadium phosphate and its phase transition as cathode material for lithium ion batteries. Electrochim. Acta 2015, 180, 120–128.CrossRefGoogle Scholar
  65. [65]
    Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519–527.CrossRefGoogle Scholar
  66. [66]
    Bhattacharya, P.; Nandasiri, M. I.; Lv, D. P.; Schwarz, A. M.; Darsell, J. T.; Henderson, W. A.; Tomalia, D. A.; Liu, J.; Zhang, J. G.; Xiao, J. Polyamidoamine dendrimer-based binders for high-loading lithium-sulfur battery cathodes. Nano Energy 2016, 19, 176–186.CrossRefGoogle Scholar
  67. [67]
    Chen, T.; Ma, L. B.; Cheng, B. R.; Chen, R. P.; Hu, Y.; Zhu, G. Y.; Wang, Y. R.; Liang, J.; Tie, Z. X.; Liu, J. et al. Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium-sulfur batteries. Nano Energy 2017, 38, 239–248.Google Scholar
  68. [68]
    Hu, G. J.; Xu, C.; Sun, Z. H.; Wang, S. G.; Cheng, H. M.; Li, F.; Ren, W. C. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries. Adv. Mater. 2016, 28, 1603–1609.CrossRefGoogle Scholar
  69. [69]
    Hwa, Y.; Seo, H. K.; Yuk, J. M.; Cairns, E. J. Freeze-dried sulfur-graphene oxide-carbon nanotube nanocomposite for high sulfur-loading lithium/sulfur cells. Nano Lett. 2017, 17, 7086–7094.CrossRefGoogle Scholar
  70. [70]
    Li, G. X.; Sun, J. H.; Hou, W. P.; Jiang, S. D.; Huang, Y.; Geng, J. X. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries. Nat. Commun. 2016, 7, 10601.CrossRefGoogle Scholar
  71. [71]
    Li, L.; Chen, L.; Mukherjee, S.; Gao, J.; Sun, H.; Liu, Z. B.; Ma, X. L.; Gupta, T.; Singh, C. V.; Ren, W. C. et al. Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium-sulfur batteries. Adv. Mater. 2017, 29, 1602734.CrossRefGoogle Scholar
  72. [72]
    Pei, F.; Lin, L. L.; Ou, D. H.; Zheng, Z. M.; Mo, S. G.; Fang, X. L.; Zheng, N. F. Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries. Nat. Commun. 2017, 8, 482.CrossRefGoogle Scholar
  73. [73]
    Song, J. X.; Yu, Z. X.; Gordin, M. L.; Wang, D. H. Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries. Nano Lett. 2016, 16, 864–870.CrossRefGoogle Scholar
  74. [74]
    Xiang, M. W.; Yang, L.; Zheng, Y. F.; Huang, J.; Jing, P.; Wu, H.; Zhang, Y.; Liu, H. A freestanding and flexible nitrogen-doped carbon foam/sulfur cathode composited with reduced graphene oxide for high sulfur loading lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 18020–18028.CrossRefGoogle Scholar
  75. [75]
    Xie, K. Y.; You, Y.; Yuan, K.; Lu, W.; Zhang, K.; Xu, F.; Ye, M.; Ke, S. M.; Shen, C.; Zeng, X. R. et al. Ferroelectric-enhanced polysulfide trapping for lithium-sulfur battery improvement. Adv. Mater. 2017, 29, 1604724.CrossRefGoogle Scholar
  76. [76]
    Ye, C.; Zhang, L.; Guo, C. X.; Li, D. D.; Vasileff, A.; Wang, H. H.; Qiao, S. Z. A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries. Adv. Funct. Mater. 2017, 27, 1702524.CrossRefGoogle Scholar
  77. [77]
    Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3982–3986.CrossRefGoogle Scholar
  78. [78]
    Zhang, Y. Y.; Li, K.; Li, H.; Peng, Y. Y.; Wang, Y. H.; Wang, J.; Zhao, J. B. High sulfur loading lithium-sulfur batteries based on a upper current collector electrode with lithium-ion conductive polymers. J. Mater. Chem. A 2017, 5, 97–101.CrossRefGoogle Scholar
  79. [79]
    Zhang, Z.; Kong, L. L.; Liu, S.; Li, G. R.; Gao, X. P. A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium-sulfur battery. Adv. Energy Mater. 2017, 7, 1602543.CrossRefGoogle Scholar
  80. [80]
    Zhou, W. D.; Guo, B. K.; Gao, H. C.; Goodenough, J. B. Low-cost higher loading of a sulfur cathode. Adv. Energy Mater. 2016, 6, 1502059.CrossRefGoogle Scholar
  81. [81]
    Pang, Q.; Liang, X.; Kwok, C. Y.; Kulisch, J.; Nazar, L. F. A comprehensive approach toward stable lithium-sulfur batteries with high volumetric energy density. Adv. Energy Mater. 2017, 7, 1601630.CrossRefGoogle Scholar
  82. [82]
    Shi, H. F.; Niu, S. Z.; Lv, W.; Zhou, G. M.; Zhang, C.; Sun, Z. H.; Li, F.; Kang, F. Y.; Yang, Q. H. Easy fabrication of flexible and multilayer nanocarbon-based cathodes with a high unreal sulfur loading by electrostatic spraying for lithium-sulfur batteries. Carbon 2018, 138, 18–25.CrossRefGoogle Scholar
  83. [83]
    Ummethala, R.; Fritzsche, M.; Jaumann, T.; Balach, J.; Oswald, S.; Nowak, R.; Sobczak, N.; Kaban, I.; Rümmeli, M. H.; Giebeler, L. Lightweight, free-standing 3D interconnected carbon nanotube foam as a flexible sulfur host for high performance lithium-sulfur battery cathodes. Energy Storage Mater. 2018, 10, 206–215.CrossRefGoogle Scholar
  84. [84]
    Ma, L. B.; Zhang, W. J.; Wang, L.; Hu, Y.; Zhu, G. Y.; Wang, Y. R.; Chen, R. P.; Chen, T.; Tie, Z. X.; Liu, J. et al. Strong capillarity, chemisorption, and electrocatalytic capability of crisscrossed nanostraws enabled flexible, high-rate, and long-cycling lithium-sulfur batteries. ACS Nano 2018, 12, 4868–4876.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lujie Jia
    • 1
  • Jian Wang
    • 2
  • Zijin Chen
    • 3
  • Yipeng Su
    • 1
  • Wei Zhao
    • 1
  • Datao Wang
    • 1
  • Yang Wei
    • 1
  • Kaili Jiang
    • 1
  • Jiaping Wang
    • 1
  • Yang Wu
    • 1
  • Jia Li
    • 3
  • Wenhui Duan
    • 1
  • Shoushan Fan
    • 1
  • Yuegang Zhang
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Low-Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijingChina
  2. 2.i-Lab, Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhouChina
  3. 3.Laboratory for Computational Materials Engineering Division of Energy and Environment, Graduate School at ShenzhenTsinghua UniversityShenzhenChina

Personalised recommendations