Advertisement

Nano Research

, Volume 12, Issue 9, pp 1988–2001 | Cite as

Aqueous organic redox flow batteries

  • Vikram Singh
  • Soeun Kim
  • Jungtaek Kang
  • Hye Ryung ByonEmail author
Review Article

Abstract

Redox flow batteries (RFBs) are promising candidates to establish a grid-scale energy storage system for intermittent energy sources. While the current technology of vanadium RFBs has been widely exploited across the world, the rise in the price of vanadium and its limited volumetric energy density have necessitated the development of new kinds of redox active molecules. Organic molecules can be used as new and economical redox couples in RFBs to address these issues. In addition, the redox organic species also provide ample advantages to increase the voltage and solubility, provide multiple numbers of electron transfer, and ensure electrochemical/chemical stability by molecular engineering through simple synthetic methods. This review focuses on the recent developments in aqueous organic RFBs, including the molecular design and the corresponding cycling performance as these organic redox molecules are employed as either the negolyte or posolyte. Various strategies for tuning the electrochemical/chemical characteristics of organic molecules have improved their solubility, redox potential, cycling stability, and crossover issue across a separating membrane. We also put forward new strategies using nanotechnology and our perspective for the future development of this rapidly growing field.

Keywords

redox flow battery redox molecules quinone TEMPO viologen solubility crossover 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work is supported by the Samsung Research Funding & Incubation Center of Samsung Electronics under Project Number SRFC-MA1702-05.

References

  1. [1]
    Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.CrossRefGoogle Scholar
  2. [2]
    ternberg, A.; Bardow, A. Power-to-what?—Environmental assessment of energy storage systems. Energy Environ. Sci. 2015, 8, 389–400.CrossRefGoogle Scholar
  3. [3]
    Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. H.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613.CrossRefGoogle Scholar
  4. [4]
    Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.CrossRefGoogle Scholar
  5. [5]
    Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.CrossRefGoogle Scholar
  6. [6]
    Zakeri, B.; Syri, S. Electrical energy storage systems: A comparative life cycle cost analysis. Renew. Sustain. Energy Rev. 2015, 42, 569–596.CrossRefGoogle Scholar
  7. [7]
    Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. In Materials for Sustainable Energy. Dusastre, V., Ed.; Co-Published with Macmillan Publishers Ltd, UK, 2010; pp 171–179.CrossRefGoogle Scholar
  8. [8]
    Hu, L. B.; Zhang, S. S.; Zhang, Z. C. Electrolytes for lithium and lithium-ion batteries. In Rechargeable Batteries. Zhang, Z. C., Zhang, S. S., Eds.; Springer: Cham, 2015; pp 231–261.CrossRefGoogle Scholar
  9. [9]
    Ding, Y.; Zhang, C. K.; Zhang, L. Y.; Zhou, Y. G.; Yu, G. H. Molecular engineering of organic electroactive materials for redox flow batteries. Chem. Soc. Rev. 2018, 47, 69–103.CrossRefGoogle Scholar
  10. [10]
    Alotto, P.; Guarnieri, M.; Moro, F. Redox flow batteries for the storage of renewable energy: A review. Renew. Sustain. Energy Rev. 2014, 29, 325–335.CrossRefGoogle Scholar
  11. [11]
    Chen, H. N.; Cong, G. T.; Lu, Y. C. Recent progress in organic redox flow batteries: Active materials, electrolytes and membranes. J. Energy Chem. 2018, 27, 1304–1325.CrossRefGoogle Scholar
  12. [12]
    Duan, W.; Kizewski, J. P.; Wang, W. Introduction to redox flow batteries. In Redox Flow Batteries. CRC Press: 2017, pp 43–76.Google Scholar
  13. [13]
    Liu, W. Q.; Lu, W. J.; Zhang, H. M.; Li, X. F. Aqueous flow batteries: Research and development. Chem. —Eur. J. 2019, 25, 1649–1664.CrossRefGoogle Scholar
  14. [14]
    Weber, A. Z.; Mench, M. M.; Meyers, J. P.; Ross, P. N.; Gostick, J. T.; Liu, Q. H. Redox flow batteries: A review. J. Appl. Electrochem. 2011, 41, 1137–1164.CrossRefGoogle Scholar
  15. [15]
    Kim, K. J.; Park, M. S.; Kim, Y. J.; Kim, J. H.; Dou, S. X.; Skyllas- Kazacos, M. A Technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. J. Mater. Chem. A 2015, 3, 16913–16933.CrossRefGoogle Scholar
  16. [16]
    laganathan, M.; Aravindan, V.; Yan, Q. Y; Madhavi, S.; Skyllas-Kazacos, M.; Lim, T. M. Recent advancements in all-vanadium redox flow batteries. Adv. Mater. Interfaces 2016, 3, 1500309.CrossRefGoogle Scholar
  17. [17]
    Choi, C.; Kim, S.; Kim, R.; Choi, Y.; Kim, S.; Jung, H. Y.; Yang, J. H.; Kim, H. T. A review of vanadium electrolytes for vanadium redox flow batteries. Renew. Sustain. Energy Rev. 2017, 69, 263–274.CrossRefGoogle Scholar
  18. [18]
    Xu, Q.; Ji, Y. N.; Qin, L. Y.; Leung, P. K.; Qiao, F.; Li, Y. S.; Su, H. N. Evaluation of redox flow batteries goes beyond round-trip efficiency: A technical review. J. Energy Storage 2018, 16, 108–115.CrossRefGoogle Scholar
  19. [19]
    Yoon, A. K. Y.; Noh, H. S.; Yoon, Y. S. Analysis of vanadium redox flow battery cell with superconducting charging system for solar energy. Elect. Electron. Eng. 2016, 6, 1–5.Google Scholar
  20. [20]
    Butler, P. C.; Eidler, P. A.; Grimes, P. G.; Klassen, S. E.; Miles, R. C. Zinc/ bromine batteries. Handbook of Batteries. Linden, D., Reddy, T. B., Eds.; McGraw-Hill: Ohio, 2001; pp 37–01.Google Scholar
  21. [21]
    Lai, Q. Z.; Zhang, H. M.; Li, X. F.; Zhang, L. Q.; Cheng, Y. H. A novel single flow zinc–bromine battery with improved energy density. J. Power Sources, 2013, 235, 1–4.CrossRefGoogle Scholar
  22. [22]
    hao, Y; Wang, L. N.; Byon, H. R. High-performance rechargeable lithiumiodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat. Commun., 2013, 4, 1896.CrossRefGoogle Scholar
  23. [23]
    Weng, G. M.; Li, Z. J.; Cong, G. T.; Zhou, Y. C.; Lu, Y. C. Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/ polyiodide redox flow batteries. Energy Environ. Sci. 2017, 10, 735–741.CrossRefGoogle Scholar
  24. [24]
    Hu, B.; DeBruler, C.; Rhodes, Z.; Liu, T. L. Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage. J. Am. Chem. Soc. 2017, 139, 1207–1214.CrossRefGoogle Scholar
  25. [25]
    Wang, W.; Sprenkle, V. Redox flow batteries go organic. Nat. Chem. 2016, 8, 204–206.CrossRefGoogle Scholar
  26. [26]
    Winsberg, J.; Hagemann, T.; Janoschka, T.; Hager, M. D.; Schubert, U. S. Redox-flow batteries: From metals to organic redox-active materials. Angew. Chem., Int. Ed. 2017, 56, 686–711.CrossRefGoogle Scholar
  27. [27]
    Kowalski, J. A.; Su, L.; Milshtein, J. D.; Brushett, F. R. Recent advances in molecular engineering of redox active organic molecules for nonaqueous flow batteries. Curr. Opin. Chem. Eng. 2016, 13, 45–52..CrossRefGoogle Scholar
  28. [28]
    Wei, X. L.; Pan, W. X.; Duan, W. T.; Hollas, A.; Yang, Z.; Li, B.; Nie, Z. M.; Liu, J.; Reed, D.; Wang, W. et al. Materials and systems for organic redox flow batteries: Status and challenges. ACS Energy Lett. 2017, 2, 2187–2204.CrossRefGoogle Scholar
  29. [29]
    Park, M.; Ryu, J.; Wang, W.; Cho, J. Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater. 2016, 2, 16080.CrossRefGoogle Scholar
  30. [30]
    Armstrong, C. G.; Toghill, K. E. Stability of molecular radicals in organic non-aqueous redox flow batteries: A mini review. Electrochem. Commun. 2018, 91, 19–24.CrossRefGoogle Scholar
  31. [31]
    Pakiari, A. H.; Siahrostami, S.; Mohajeri, A. Application of density functional theory for evaluation of standard two-electron reduction potentials in some quinone derivatives. J. Mol. Struct. THEOCHEM 2008, 870, 10–14.CrossRefGoogle Scholar
  32. [32]
    Pelzer, K. M.; Cheng, L.; Curtiss, L. A. Effects of functional groups in redox-active organic molecules: A high-throughput screening approach. J. Phys. Chem. C 2017, 121, 237–245.CrossRefGoogle Scholar
  33. [33]
    Ding, Y.; Li, Y. F.; Yu, G. H. Exploring bio-inspired quinone-based organic redox flow batteries: A combined experimental and computational study. Chem 2016, 1, 790–801.CrossRefGoogle Scholar
  34. [34]
    Bachman, J. E.; Curtiss, L. A.; Assary, R. S. Investigation of the redox chemistry of anthraquinone derivatives using density functional theory. J. Phys. Chem. A 2014, 118, 8852–8860.CrossRefGoogle Scholar
  35. [35]
    Er, S.; Suh, C.; Marshak, M. P.; Aspuru-Guzik, A. Computational design of molecules for an all-quinone redox flow battery. Chem. Sci. 2015, 6, 885–893.CrossRefGoogle Scholar
  36. [36]
    Yang, C. Z.; Nikiforidis, G.; Park, J. Y.; Choi, J.; Luo, Y.; Zhang, L.; Wang, S. C.; Chan, Y. T.; Lim, J.; Hou, Z. M. et al. Designing redox-stable cobalt–polypyridyl complexes for redox flow batteries: Spin-crossover delocalizes excess charge. Adv. Energy Mater. 2018, 8, 1702897.Google Scholar
  37. [37]
    Yang, Z. J.; Tong, L. C.; Tabor, D. P.; Beh, E. S.; Goulet, M. A.; De Porcellinis, D.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J. Alkaline benzoquinone aqueous flow battery for large-scale storage of electrical energy. Adv. Energy Mater. 2018, 8, 1702056.CrossRefGoogle Scholar
  38. [38]
    Quan, M.; Sanchez, D.; Wasylkiw, M. F.; Smith, D. K. Voltammetry of quinones in unbuffered aqueous solution: Reassessing the roles of proton transfer and hydrogen bonding in the aqueous electrochemistry of quinones. J. Am. Chem. Soc. 2007, 129, 12847–12856.CrossRefGoogle Scholar
  39. [39]
    Bird, C. L.; Kuhn, A. T. Electrochemistry of the viologens. Chem. Soc. Rev. 1981, 10, 49–82.CrossRefGoogle Scholar
  40. [40]
    Hu, B.; Tang, Y. J.; Luo, J.; Grove, G.; Guo, Y. S.; Liu, T. L. Improved radical stability of viologen anolytes in aqueous organic redox flow batteries. Chem. Commun. 2018, 54, 6871–6874.CrossRefGoogle Scholar
  41. [41]
    Luo, J.; Hu, B.; Debruler, C.; Liu, T. L. A p-conjugation extended viologen as a two-electron storage anolyte for total organic aqueous redox flow batteries. Angew. Chem., Int. Ed. 2018, 57, 231–235.CrossRefGoogle Scholar
  42. [42]
    DeBruler, C.; Hu, B.; Moss, J.; Liu, X.; Luo, J.; Sun, Y. J.; Liu, T. L. Designer two-electron storage viologen anolyte materials for neutral aqueous organic redox flow batteries. Chem 2017, 3, 961–978.CrossRefGoogle Scholar
  43. [43]
    Penzkofer, A.; Tyagi, A.; Kiermaier, J. Room temperature hydrolysis of lumiflavin in alkaline aqueous solution. J. Photochem. Photobiol. A Chem. 2011, 217, 369–375.CrossRefGoogle Scholar
  44. [44]
    Marshall, D. L.; Christian, M. L.; Gryn’ova, G.; Coote, M. L.; Barker, P. J.; Blanksby, S. J. Oxidation of 4-substituted TEMPO derivatives reveals modifications at the 1- and 4-positions. Org. Biomol. Chem. 2011, 9, 4936–4947.CrossRefGoogle Scholar
  45. [45]
    Kurreck, H.; Huber, M. Model reactions for photosynthesis—Photoinduced charge and energy transfer between covalently linked porphyrin and quinone units. Angew. Chem., Int. Ed. 1995, 34, 849–866.CrossRefGoogle Scholar
  46. [46]
    Scott, D. T.; McKnight, D. M.; Blunt-Harris, E. L.; Kolesar, S. E.; Lovley, D. R. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ. Sci. Technol. 1998, 32, 2984–2989.CrossRefGoogle Scholar
  47. [47]
    Hoober-Burkhardt, L.; Krishnamoorthy, S.; Yang, B.; Murali, A.; Nirmalchandar, A.; Prakash, G. K. S.; Narayanan, S. R. A new michael-reactionresistant benzoquinone for aqueous organic redox flow batteries. J. Electrochem. Soc. 2017, 164, A600–A607.CrossRefGoogle Scholar
  48. [48]
    Ding, Y.; Yu, G. H. A bio-inspired, heavy-metal-free, dual-electrolyte liquid battery towards sustainable energy storage. Angew. Chem., Int. Ed. 2016, 55, 4772–4776.CrossRefGoogle Scholar
  49. [49]
    Xu, Y.; Wen, Y. H.; Cheng, J.; Yanga, Y. S.; Xie, Z. L.; Cao, G. P. Novel organic redox flow batteries using soluble quinonoid compounds as positive materials. In Proceedings of 2009 World Non-Grid-Connected Wind Power and Energy Conference, Nanjing,China, 2009.Google Scholar
  50. [50]
    Yang, B.; Hoober-Burkhardt, L.; Wang, F.; Surya Prakash, G. K.; Narayanan, S. R. An inexpensive aqueous flow battery for large-scale electrical energy storage based on water-soluble organic redox couples. J. Electrochem. Soc. 2014, 161, A1371–A1380.CrossRefGoogle Scholar
  51. [51]
    Wedege, K.; Draževic, E.; Konya, D.; Bentien, A. Organic redox species in aqueous flow batteries: Redox potentials, chemical stability and solubility. Sci. Rep. 2016, 6, 39101.CrossRefGoogle Scholar
  52. [52]
    Wang, C. X.; Yang, Z.; Wang, Y. R.; Zhao, P. Y.; Yan, W.; Zhu, G. Y.; Ma, L. B.; Yu, B.; Wang, L.; Li, G. G. et al. High-performance alkaline organic redox flow batteries based on 2-hydroxy-3-carboxy-1,4-naphthoquinone. ACS Energy Lett. 2018, 3, 2404–2409..CrossRefGoogle Scholar
  53. [53]
    Gerhardt, M. R.; Tong, L. C.; Gómez-Bombarelli, R.; Chen, Q.; Marshak, M. P.; Galvin, C. J.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J. Anthraquinone derivatives in aqueous flow batteries. Adv. Energy Mater. 2017, 7, 1601488.CrossRefGoogle Scholar
  54. [54]
    Huskinson, B.; Marshak, M. P.; Suh, C.; Er, S.; Gerhardt, M. R.; Galvin, C. J.; Chen, X. D.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J. A metal-free organic-inorganic aqueous flow battery. Nature 2014, 505, 195–198.CrossRefGoogle Scholar
  55. [55]
    Carretero-González, J.; Castillo-Martínez, E.; Armand, M. Highly watersoluble three-redox state organic dyes as bifunctional analytes. Energy Environ. Sci. 2016, 9, 3521–3530..CrossRefGoogle Scholar
  56. [56]
    Lin, K. X.; Chen, Q.; Gerhardt, M. R.; Tong, L. C.; Kim, S. B.; Eisenach, L.; Valle, A. W.; Hardee, D.; Gordon, R. G.; Aziz, M. J. et al. Alkaline quinone flow battery. Science 2015, 349, 1529–1532.CrossRefGoogle Scholar
  57. [57]
    Kwabi, D. G.; Lin, K. X.; Ji, Y. L.; Kerr, E. F.; Goulet, M. A.; De Porcellinis, D.; Tabor, D. P.; Pollack, D. A.; Aspuru-Guzik, A.; Gordon, R. G. et al. Alkaline quinone flow battery with long lifetime at pH 12. Joule 2018, 2, 1894–1906.CrossRefGoogle Scholar
  58. [58]
    Michaelis, L.; Hill, E. S. The viologen indicators. J. Gen. Physiol. 1933, 16, 859–873.CrossRefGoogle Scholar
  59. [59]
    Liu, T. B.; Wei, X. L.; Nie, Z. M.; Sprenkle, V.; Wang, W. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte. Adv. Energy Mater. 2016, 6, 1501449.CrossRefGoogle Scholar
  60. [60]
    Beh, E. S.; De Porcellinis, D.; Gracia, R. L.; Xia, K. T.; Gordon, R. G.; Aziz, M. J. A neutral pH aqueous organic–organometallic redox flow battery with extremely high capacity retention. ACS Energy Lett. 2017, 2, 639–644.CrossRefGoogle Scholar
  61. [61]
    DeBruler, C.; Hu, B.; Moss, J.; Luo, J.; Liu, T. L. A sulfonate-functionalized viologen enabling neutral cation exchange, aqueous organic redox flow batteries toward renewable energy storage. ACS Energy Lett. 2018, 3, 663–668.CrossRefGoogle Scholar
  62. [62]
    Skyllas-Kazacos, M.; Chakrabarti, M. H.; Hajimolana, S. A.; Mjalli, F. S.; Saleem, M. Progress in flow battery research and development. J. Electrochem. Soc.2011, 158, R55–R79.CrossRefGoogle Scholar
  63. [63]
    Miura, R. Versatility and specificity in flavoenzymes: Control mechanisms of flavin reactivity. Chem. Rec. 2001, 1, 183–194.CrossRefGoogle Scholar
  64. [64]
    Hong, J.; Lee, M.; Lee, B.; Seo, D. H.; Park, C. B.; Kang, K. Biologically inspired pteridine redox centres for rechargeable batteries. Nat. Commun. 2014, 5, 53359.Google Scholar
  65. [65]
    Lin, K. X.; Gómez-Bombarelli, R.; Beh, E. S.; Tong, L. C.; Chen, Q.; Valle, A.; Aspuru-Guzik, A.; Aziz, M. J.; Gordon, R. G. A redox-flow battery with an alloxazine-based organic electrolyte. Nat Energy 2016, 1, 16102.CrossRefGoogle Scholar
  66. [66]
    Orita, A.; Verde, M. G.; Sakai, M.; Meng, Y. S. A biomimetic redox flow battery based on flavin mononucleotide. Nat. Commun. 2016, 7, 13230.CrossRefGoogle Scholar
  67. [67]
    Winsberg, J.; Stolze, C.; Schwenke, A.; Muench, S.; Hager, M. D.; Schubert, U. S. Aqueous 2,2,6,6-tetramethylpiperidine-N-oxyl catholytes for a high-capacity and high current density oxygen-insensitive hybrid-flow battery. ACS Energy Lett. 2017, 2, 411–416.CrossRefGoogle Scholar
  68. [68]
    Janoschka, T.; Martin, N.; Hager, M. D.; Schubert, U. S. An aqueous redox-flow battery with high capacity and power: The TEMPTMA/MV system. Angew. Chem., Int. Ed. 2016, 55, 14427–14430..CrossRefGoogle Scholar
  69. [69]
    Chang, Z. J.; Henkensmeier, D.; Chen, R. Y. One-step cationic grafting of 4-hydroxy-TEMPO and its application in a hybrid redox flow battery with a crosslinked PBI membrane. ChemSusChem 2017, 10, 3193–3197.CrossRefGoogle Scholar
  70. [70]
    Winsberg, J.; Stolze, C.; Muench, S.; Liedl, F.; Hager, M. D.; Schubert, U. S. TEMPO/phenazine combi-molecule: A redox-active material for symmetric aqueous redox-flow batteries. ACS Energy Lett. 2016, 1, 3193–3197.CrossRefGoogle Scholar
  71. [71]
    Hollas, A.; Wei, X. L.; Murugesan, V.; Nie, Z. M.; Li, B.; Reed, D.; Liu, J.; Sprenkle, V.; Wang, W. A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries. Nat Energy 2018, 3, 508–514.CrossRefGoogle Scholar
  72. [72]
    Janoschka, T.; Friebe, C.; Hager, M. D.; Martin, N.; Schubert, U. S. An approach toward replacing vanadium: A single organic molecule for the anode and cathode of an aqueous redox-flow battery. ChemistryOpen 2017, 6, 216–220.CrossRefGoogle Scholar
  73. [73]
    Janoschka, T.; Martin, N.; Martin, U.; Friebe, C.; Morgenstern, S.; Hiller, H.; Hager, M. D.; Schubert, U. S. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 2015, 527, 78–81.CrossRefGoogle Scholar
  74. [74]
    Winsberg, J.; Janoschka, T.; Morgenstern, S.; Hagemann, T.; Muench, S.; Hauffman, G.; Gohy, J. F.; Hager, M. D.; Schubert, U. S. Poly(TEMPO)/zinc hybrid-flow battery: A novel, “green,” high voltage, and safe energy storage system. Adv. Mater. 2016, 28, 2238–2243.CrossRefGoogle Scholar
  75. [75]
    Lee, W.; Kwon, B. W.; Kwon, Y. Effect of carboxylic acid-doped carbon nanotube catalyst on the performance of aqueous organic redox flow battery using the modified alloxazine and ferrocyanide redox couple. ACS Appl. Mater. Interfaces 2018, 10, 36882–36891..CrossRefGoogle Scholar
  76. [76]
    Montoto, E. C.; Nagarjuna, G.; Hui, J. S.; Burgess, M.; Sekerak, N. M.; Hernández-Burgos, K.; Wei, T. S.; Kneer, M.; Grolman, J.; Cheng, K. J. et al. Redox active colloids as discrete energy storage carriers. J. Am. Chem. Soc. 2016, 138, 13230–13237.CrossRefGoogle Scholar
  77. [77]
    Doris, S. E.; Ward, A. L.; Baskin, A.; Frischmann, P. D.; Gavvalapalli, N.; Chénard, E.; Sevov, C. S.; Prendergast, D.; Moore, J. S.; Helms, B. A. Macromolecular design strategies for preventing active-material crossover in non-aqueous all-organic redox-flow batteries. Angew. Chem., Int. Ed. 2017, 56, 1595–1599.CrossRefGoogle Scholar
  78. [78]
    Jeon, C.; Han, J. J.; Seo, M. Control of ion transport in sulfonated mesoporous polymer membranes. ACS Appl. Mater. Interfaces 2018, 10, 40854–40862.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Vikram Singh
    • 1
    • 2
  • Soeun Kim
    • 1
    • 2
  • Jungtaek Kang
    • 1
  • Hye Ryung Byon
    • 1
    • 2
    Email author
  1. 1.Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
  2. 2.KAIST Institute for NanoCenturyAdvanced Battery CenterDaejeonRepublic of Korea

Personalised recommendations