Advertisement

Mn3O4 nanoparticles@reduced graphene oxide composite: An efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions

  • Hong Huang
  • Feng Gong
  • Yuan Wang
  • Huanbo Wang
  • Xiufeng Wu
  • Wenbo Lu
  • Runbo Zhao
  • Hongyu Chen
  • Xifeng Shi
  • Abdullah M. Asiri
  • Tingshuai Li
  • Qian Liu
  • Xuping SunEmail author
Research Article
  • 83 Downloads

Abstract

Currently, industrial-scale NH3 production almost relies on energy-intensive Haber-Bosch process from atmospheric N2 with large amount of CO2 emission, while low-cost and high-efficient catalysts are demanded for the N2 reduction reaction (NRR). In this study, Mn3O4 nanoparticles@reduced graphene oxide (Mn3O4@rGO) composite is reported as an efficient NRR electrocatalyst with excellent selectivity for NH3 formation. In 0.1 M Na2SO4 solution, such catalyst obtains a NH3 yield of 17.4 μg·h−1·mg−1cat. and a Faradaic efficiency of 3.52% at −0.85 V vs. reversible hydrogen electrode. Notably, it also shows high electrochemical stability during electrolysis process. Density functional theory (DFT) calculations also demonstrate that the (112) planes of Mn3O4 possess superior NRR activity.

Keywords

Mn3O4@rGO composite electrocatalyst NH3 synthesis N2 reduction reaction ambient conditions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21575137).

Supplementary material

12274_2019_2352_MOESM1_ESM.pdf (4.5 mb)
Mn3O4 nanoparticles@reduced graphene oxide composite: An efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions

References

  1. [1]
    Service, R. F. Chemistry. New recipe produces ammonia from air, water, and sunlight. Science 2014, 345, 610.Google Scholar
  2. [2]
    Schlögl, R. Catalytic synthesis of ammonia—a “never-ending story”? Angew. Chem., Int. Ed. 2003, 42, 2004–2008.CrossRefGoogle Scholar
  3. [3]
    Smil, V. Detonator of the population explosion. Nature 1999, 400, 415.CrossRefGoogle Scholar
  4. [4]
    Rafiqul, I.; Weber, C.; Lehmann, B.; Voss, A. Energy efficiency improvements in ammonia production—Perspectives and uncertainties. Energy 2005, 30, 2487–2504.CrossRefGoogle Scholar
  5. [5]
    Jennings, J. R. Catalytic Ammonia Synthesis: Fundamentals and Practice; Spring: Boston, 1991.CrossRefGoogle Scholar
  6. [6]
    Chen, G. F.; Ren, S. Y.; Zhang, L. L.; Cheng, H.; Luo, Y. R.; Zhu, K. H.; Ding, L. X.; Wang, H. H. Advances in electrocatalytic N2 reduction—Strategies to tackle the selectivity challenge. Small Methods, in press, DOI: 10.1002/smtd.201800337.Google Scholar
  7. [7]
    Shipman, M. A.; Symes, M. D. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal. Today 2017, 286, 57–68.CrossRefGoogle Scholar
  8. [8]
    Kyriakou, V.; Garagounis, I.; Vasileiou, E.; Vourros, A.; Stoukides, M. Progress in the electrochemical synthesis of ammonia. Catal. Today 2017, 286, 2–13.CrossRefGoogle Scholar
  9. [9]
    Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient Conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.CrossRefGoogle Scholar
  10. [10]
    Huang, H. H.; Xia, L.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Ag nanosheets for efficient electrocatalytic N2 fixation to NH3 under ambient conditions. Chem. Commun. 2018, 54, 11427–11430.CrossRefGoogle Scholar
  11. [11]
    Liu, H. M.; Han, S. H.; Zhao, Y.; Zhu, Y. Y.; Tian, X. L.; Zeng, J. H.; Jiang, J. X.; Xia, B. Y.; Chen, Y. Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction. J. Mater. Chem. A 2018, 6, 3211–3217.CrossRefGoogle Scholar
  12. [12]
    Zhang, R.; Ren, X.; Shi, X. F.; Xie, F. Y.; Zheng, B. Z.; Guo, X. D.; Sun, X. P. Enabling effective electrocatalytic N2 conversion to NH3 by the TiO2 nanosheets array under ambient conditions. ACS Appl. Mater. Interfaces 2018, 10, 28251–28255.CrossRefGoogle Scholar
  13. [13]
    Zhang, L.; Ren, X.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Li, T. S.; Sun, X. P. Ambient NH3 synthesis via electrochemical reduction of N2 over cubic sub-micron SnO2 particles. Chem. Commun. 2018, 54, 12966–12969.CrossRefGoogle Scholar
  14. [14]
    Luo, Y. R.; Chen, G. F.; Ding, L.; Chen, X. Z.; Ding, L. X.; Wang, H. H. Efficient electrocatalytic N2 fixation with MXene under ambient conditions. Joule 2019, 3, 279–289.CrossRefGoogle Scholar
  15. [15]
    Lv, C. D.; Yan, C. S.; Chen, G.; Ding, Y.; Sun, J. X.; Zhou, Y. S.; Yu, G. H. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 6073–6076.CrossRefGoogle Scholar
  16. [16]
    Yang, D. S.; Chen, T.; Wang, Z. J. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. J. Mater. Chem. A 2017, 5, 18967–18971.CrossRefGoogle Scholar
  17. [17]
    Han, J. R.; Liu, Z. C.; Ma, Y. J.; Cui, G. W.; Xie, F. Y.; Wang, F. X.; Wu, Y. P.; Gao, S. Y.; Xu, Y. H.; Sun, X. P. Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst. Nano Energy 2018, 52, 264–270.CrossRefGoogle Scholar
  18. [18]
    Li, X. H.; Li, T. S.; Ma, Y. J.; Wei, Q.; Qiu, W. B.; Guo, H. R.; Shi, X. F.; Zhang, P.; Asiri, A. M.; Chen, L. et al. Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower. Adv. Energy Mater. 2018, 8, 1801357.CrossRefGoogle Scholar
  19. [19]
    Zhu, X. J.; Liu, Z. C.; Liu, Q.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Wu, Y. P.; Sun, X. P. Efficient and durable N2 reduction electrocatalysis under ambient conditions: β-FeOOH nanorods as a non-noble-metal catalyst. Chem. Commun. 2018, 54, 11332–11335.CrossRefGoogle Scholar
  20. [20]
    Cheng, H.; Ding, L. X.; Chen, G. F.; Zhang, L. L.; Xue, J.; Wang, H. H. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater. 2018, 30, 1803694.CrossRefGoogle Scholar
  21. [21]
    Zhang, Y.; Qiu, W. B.; Ma, Y. J.; Luo, Y. L.; Tian, Z. Q.; Cui, G. W.; Xie, F. Y.; Chen, L.; Li, T. S.; Sun, X. P. High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions. ACS Catal. 2018, 8, 8540–8544.CrossRefGoogle Scholar
  22. [22]
    Zhao, J. X.; Zhang, L.; Xie, X. Y.; Li, X. H.; Ma, Y. J.; Liu, Q.; Fang, W. H.; Shi, X. F.; Cui, G. L.; Sun, X. P. Ti3C2Tx (T = F, OH) MXene nanosheets: Conductive 2D catalysts for ambient electrohydrogenation of N2 to NH3. J. Mater. Chem. A 2018, 6, 24031–24035.CrossRefGoogle Scholar
  23. [23]
    Chen, G. F.; Cao, X. R.; Wu, S. Q.; Zeng, X. Y.; Ding, L. X.; Zhu, M.; Wang, H. H. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 2017, 139, 9771–9774.CrossRefGoogle Scholar
  24. [24]
    Wu, X. F.; Xia, L.; Wang, Y.; Lu, W. B.; Liu, Q.; Shi, X. F.; Sun, X. P. Mn3O4 nanocube: An efficient electrocatalyst toward artificial N2 fixation to NH3. Small 2018, 14, 1803111.CrossRefGoogle Scholar
  25. [25]
    Wang, H. L.; Cui, L. F.; Yang, Y.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978–13980.CrossRefGoogle Scholar
  26. [26]
    Di Blasi, A.; Busaccaa, C.; Di Blasia, O.; Briguglioa, N.; Squadritoa, G.; Antonuccia, V. Synthesis of flexible electrodes based on electrospun carbon nanofibers with Mn3O4 nanoparticles for vanadium redox flow battery application. Appl. Energy 2017, 190, 165–171.CrossRefGoogle Scholar
  27. [27]
    Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.CrossRefGoogle Scholar
  28. [28]
    Xing, Z. C.; Chu, Q. X.; Ren, X. B.; Tian, J. Q.; Asiri, A. M.; Alamry, K. A.; Al-Youbi, A. O.; Sun, X. P. Biomolecule-assisted synthesis of nickel sulfides/reduced graphene oxide nanocomposites as electrode materials for supercapacitors. Electrochem. Commun. 2013, 32, 9–13.CrossRefGoogle Scholar
  29. [29]
    Yang, S. B.; Zhi, L. J.; Tang, K.; Feng, X. L.; Maier, J.; Müllen, K. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv. Funct. Mater. 2012, 22, 3634–3640.CrossRefGoogle Scholar
  30. [30]
    Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.CrossRefGoogle Scholar
  31. [31]
    Wang, J. G.; Jin, D. D.; Zhou, R.; Li, X.; Liu, X. R.; Shen, C.; Xie, K. Y.; Li, B. H.; Kang, F. Y.; Wei, B. Q. Highly flexible graphene/Mn3O4 nanocomposite membrane as advanced anodes for li-ion batteries. ACS Nano 2016, 10, 6227–6234.CrossRefGoogle Scholar
  32. [32]
    Zhang, X. X.; Liu, Q.; Shi, X. F.; Asiri, A. M.; Luo, Y. L.; Sun, X. P.; Li, T. S. TiO2 nanoparticles-reduced graphene oxide hybrid: An efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions. J. Mater. Chem. A 2018, 6, 17303–17306.CrossRefGoogle Scholar
  33. [33]
    Kibsgaard, J.; Tsai, C.; Chan, K. R.; Benck, J. D.; Nørskov, J. K.; Abild-Pedersen, F.; Jaramillo, T. F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 2015, 8, 3022–3029.CrossRefGoogle Scholar
  34. [34]
    Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.CrossRefGoogle Scholar
  35. [35]
    Zhu, D.; Zhang, L. H.; Ruther, R. E.; Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836–841.CrossRefGoogle Scholar
  36. [36]
    Watt, G. W.; Chrisp, J. D. A spectrophotometric method for the determination of hydrazine. Anal. Chem. 1952, 24, 2006–2008.CrossRefGoogle Scholar
  37. [37]
    Segall, M. D.; Linda, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717–2744.CrossRefGoogle Scholar
  38. [38]
    Jain, A.; Hautier, G.; Ong, S. P.; Moore, C. J.; Fischer, C. C.; Persson, K. A.; Ceder, G. Formation enthalpies by mixing GGA and GGA + U calculations. Phys. Rev. B 2011, 84, 045115.CrossRefGoogle Scholar
  39. [39]
    Wang, L.; Maxisch, T.; Ceder, G. Oxidation energies of transition metal oxides within the GGA + U framework. Phys. Rev. B 2006, 73, 195107.CrossRefGoogle Scholar
  40. [40]
    Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefGoogle Scholar
  41. [41]
    Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.CrossRefGoogle Scholar
  42. [42]
    Gong, F.; Ding, Z. W.; Fang, Y.; Tong, C. J.; Xia, D. W.; Lv, Y. Y.; Wang, B.; Papavassiliou, D. V.; Liao, J. X.; Wu, M. Q. Enhanced electrochemical and thermal transport properties of graphene/MoS2 heterostructures for energy storage: Insights from multiscale modeling. ACS Appl. Mater. Interfaces 2018, 10, 14614–14621.CrossRefGoogle Scholar
  43. [43]
    Zhang, G. G.; Kong, M. L.; Yao, Y. D.; Long, L.; Yan, M. L.; Liao, X. M.; Yin, G. F.; Huang, Z. B.; Asiri, A. M.; Sun, X. P. One-pot synthesis of γ-MnS/reduced graphene oxide with enhanced performance for aqueous asymmetric supercapacitors. Nanotechnology 2017, 28, 065402.CrossRefGoogle Scholar
  44. [44]
    Tang, L. H.; Wang, Y.; Li, Y. M.; Feng, H. B.; Lu J.; Li, J. H. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 2009, 19, 2782–2789.CrossRefGoogle Scholar
  45. [45]
    Liu, X. J.; Pan, L. K.; Lv, T.; Zhu, G.; Sun, Z.; Sun, C. Q. Microwaveassisted synthesis of CdS-reduced graphene oxide composites for photocatalytic reduction of Cr (VI). Chem. Commun. 2011, 47, 11984–11986.CrossRefGoogle Scholar
  46. [46]
    Yang, S. H.; Song, X. F.; Zhang, P.; Gao, L. Crumpled nitrogen-doped graphene–ultrafine Mn3O4 nanohybrids and their application in supercapacitors. J. Mater. Chem. A 2013, 1, 14162–14169.CrossRefGoogle Scholar
  47. [47]
    Liu, C. L.; Chang, K. H.; Hu, C. C.; Wen, W. C. Microwave-assisted hydrothermal synthesis of Mn3O4/reduced graphene oxide composites for high power supercapacitors. J. Power Sources 2012, 217, 184–192.CrossRefGoogle Scholar
  48. [48]
    Wang, H. L.; Hao, Q. L.; Yang, X. J.; Lu, L. D.; Wang, X. A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2010, 2, 2164–2170.CrossRefGoogle Scholar
  49. [49]
    Zhang, L. S.; Zhao, L. J.; Lian, J. S. Nanostructured Mn3O4–reduced graphene oxide hybrid and its applications for efficient catalytic decomposition of orange II and high lithium storage capacity. RSC Adv. 2014, 4, 41838–41847.CrossRefGoogle Scholar
  50. [50]
    Wang, C. B.; Yin, L. W.; Xiang, D.; Qi, Y. X. Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 1636–1642.CrossRefGoogle Scholar
  51. [51]
    Bag, S.; Roy, K.; Gopinath, C. S.; Raj, C. R. Facile single-step synthesis of nitrogen-doped reduced graphene oxide-Mn3O4 hybrid functional material for the electrocatalytic reduction of oxygen. ACS Appl. Mater. Interfaces 2014, 6, 2692–2699.CrossRefGoogle Scholar
  52. [52]
    Liu, T. T.; Ma, X.; Liu, D. N.; Hao, S.; Du, G.; Ma, Y. J.; Asiri, A. M.; Sun, X. P.; Chen, L. Mn doping of CoP nanosheets array: An efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values. ACS Catal. 2017, 7, 98–102.CrossRefGoogle Scholar
  53. [53]
    Wu, Y. Z.; Liu, S. Q.; Wang, H. Y.; Wang, X. W.; Zhang, X.; Jin, G. H. A novel solvothermal synthesis of Mn3O4/graphene composites for supercapacitors. Electrochim. Acta 2013, 90, 210–218.CrossRefGoogle Scholar
  54. [54]
    Lee, J. W.; Hall, A. S.; Kim, J. D.; Mallouk, T. E. A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 2012, 24, 1158–1164.CrossRefGoogle Scholar
  55. [55]
    Tian, Y. Y.; Li, D. W.; Liu, J. L.; Wang, H.; Zhang, J. F.; Zheng, Y. Q.; Liu, T. H.; Hou, S. F. Facile synthesis of Mn3O4 nanoplates-anchored graphene microspheres and their applications for supercapacitors. Electrochim. Acta 2017, 257, 155–164.CrossRefGoogle Scholar
  56. [56]
    Ren, X.; Zhao, J. X.; Wei, Q.; Ma, Y. J.; Guo, H. R.; Liu, Q.; Wang, Y.; Cui, G. W.; Asiri, A. M.; Li, B. H. et al. High-performance N2-to-NH3 conversion electrocatalyzed by Mo2C nanorod. ACS Cent. Sci. 2018, 5, 116–121.CrossRefGoogle Scholar
  57. [57]
    Qiu, W. B.; Xie, X. Y.; Qiu, J. D.; Fang, W. H.; Liang, R. P.; Ren, X.; Ji, X. Q.; Cui, G. W.; Asiri, A. M.; Cui, G. L. et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 2018, 9, 3485.CrossRefGoogle Scholar
  58. [58]
    Wang, J.; Yu, L.; Hu, L.; Chen, G.; Xin, H. L.; Feng, X. F. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1795.CrossRefGoogle Scholar
  59. [59]
    Zhang, Y.; Du, H.; Ma, Y.; Ji, L.; Guo, H.; Tian, Z.; Chen, H.; Huang, H.; Cui, G.; Asiri, A. M. et al. Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3. Nano Res. 2019, in press, https://doi.org/10.1007/s12274-019-2323-x.Google Scholar
  60. [60]
    Wang, Z.; Gong, F.; Zhang, L.; Wang, R.; Ji, L.; Liu, Q.; Luo, Y. L.; Guo, H. R.; Li, Y. H.; Gao, P. et al. Electrocatalytic hydrogenation of N2 to NH3 by MnO: Experimental and theoretical investigations. Adv. Sci. 2019, 6, 1801182.CrossRefGoogle Scholar
  61. [61]
    Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, 61, 1527–1535.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hong Huang
    • 1
  • Feng Gong
    • 3
  • Yuan Wang
    • 1
  • Huanbo Wang
    • 2
  • Xiufeng Wu
    • 1
    • 4
  • Wenbo Lu
    • 4
  • Runbo Zhao
    • 1
  • Hongyu Chen
    • 1
  • Xifeng Shi
    • 5
  • Abdullah M. Asiri
    • 6
  • Tingshuai Li
    • 3
  • Qian Liu
    • 3
  • Xuping Sun
    • 1
    Email author
  1. 1.Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.School of Environment and ResourceSouthwest University of Science and TechnologyMianyangChina
  3. 3.School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengduChina
  4. 4.Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material ScienceShanxi Normal UniversityLinfenChina
  5. 5.College of Chemistry, Chemical Engineering and Materials ScienceShandong Normal UniversityJinanChina
  6. 6.Chemistry Department, Faculty of Science & Center of Excellence for Advanced Materials ResearchKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations