Nano Research

, Volume 12, Issue 5, pp 1061–1069 | Cite as

A high over-potential binder-free electrode constructed of Prussian blue and MnO2 for high performance aqueous supercapacitors

  • Gaowei Zhang
  • Hua Yao
  • Feng Zhang
  • Zitao Gao
  • Qiujun Li
  • Yangyi YangEmail author
  • Xihong Lu
Research Article


Extending the potential window of aqueous supercapacitors (SCs) up to 2.0 V is still a great challenge. Based on their good dynamic structural reversibility and open framework structure, the coordination superamolecular networks (CSNs) exhibit rapid charge/discharge ability and excellent cycle stability. As a typical coordination superamolecular network (CSN), Prussian blue (denoted as CSN-PB), which self-assembled by the CN ligand and iron ions is firstly in-situ grown on carbon cloth, followed by electro-deposition of MnO2 to form CSN-PB/MnO2 composite electrode. Benefiting from synergistic effect of the constituent components, as well as the open framework structure of CSN-PB, this composite electrode reaches a high potential window of 1.4 V (vs. Ag/AgCl) and delivers a good specific capacitance of 315.3 F·g−1 in aqueous electrolyte. An aqueous asymmetric device, constructed with CSN-PB/MnO2 composite as cathode and activated carbon as anode, can work in a stable potential window of 2.4 V, exhibits a high energy density of 46.13 Wh·kg−1 and excellent cycling stability with 85.5% capacitance retention after 20,000 cycles. This work provides a new concept of high dynamic structural reversibility from CSNs to increase the cell voltage of asymmetric SCs for further boosting energy density.


coordination superamolecular networks Prussian blue high operating voltage binder-free electrode aqueous supercapacitors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 51472275, 20973203 and 91022012), Guangdong Natural Science Foundation (No. 2014A030313207), as well as Laboratory Open Fund Project of Sun Yat-sen University (No. 201610310003).

Supplementary material

Supplementary material, approximately 6.61 MB.

12274_2019_2347_MOESM2_ESM.pdf (4.9 mb)
A high over-potential binder-free electrode constructed of Prussian blue and MnO2 for high performance aqueous supercapacitors


  1. [1]
    Miller, J. R. Valuing reversible energy storage. Science 2012, 335, 1312–1313.CrossRefGoogle Scholar
  2. [2]
    Gogotsi, Y. Energy storage wrapped up. Nature 2014, 509, 568–570.CrossRefGoogle Scholar
  3. [3]
    Huang, Z. H.; Song, Y.; Feng, D. Y.; Sun, Z.; Sun, X. Q.; Liu, X. X. High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 2018, 12, 3557–3567.CrossRefGoogle Scholar
  4. [4]
    Zhao, Y.; Liu, J. Z.; Zheng, D. Z.; Wang, B.; Hu, M. J.; Sha, J. B.; Li, Y. Achieving high capacitance of paper-like graphene films by adsorbing molecules from hydrolyzed polyimide. Small 2018, 14, 1702809.CrossRefGoogle Scholar
  5. [5]
    Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.CrossRefGoogle Scholar
  6. [6]
    Zhang, Y.; Qu, T. T.; Xiang, K.; Shen, Y.; Chen, S. Y.; Xie, M. J.; Guo, X. F. In situ formation/carbonization of quinone-amine polymers towards hierarchical porous carbon foam with high faradaic activity for energy storage. J. Mater. Chem. A 2018, 6, 2353–2359.CrossRefGoogle Scholar
  7. [7]
    Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn, Y.; Dincă, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 16, 220–224.CrossRefGoogle Scholar
  8. [8]
    Wang, Y. G.; Song, Y. F.; Xia, Y. Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950.CrossRefGoogle Scholar
  9. [9]
    Jiao, Y. Z.; Zhang, H. T.; Zhang, H. L.; Liu, A.; Liu, Y. X.; Zhang, S. J. Highly bonded T-Nb2O5/rGO nanohybrids for 4V quasi-solid state asymmetric supercapacitors with improved electrochemical performance. Nano Res. 2018, 11, 4673–4685.CrossRefGoogle Scholar
  10. [10]
    Tang, Y. F.; Li, Y. S.; Guo, W. F.; Wang, J.; Li, X. M.; Chen, S. J.; Mu, S. C.; Zhao, Y. F.; Gao, F. M. A highly ordered multi-layered hydrogenated TiO2-II phase nanowire array negative electrode for 2.4V aqueous asymmetric supercapacitors with high energy density and long cycle life. J. Mater. Chem. A 2018, 6, 623–632.CrossRefGoogle Scholar
  11. [11]
    Forse, A. C.; Merlet, C.; Griffin, J. M.; Grey, C. P. New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 2016, 138, 5731–5744.CrossRefGoogle Scholar
  12. [12]
    Grote, F.; Lei, Y. A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO2. Nano Energy 2014, 10, 63–70.CrossRefGoogle Scholar
  13. [13]
    Lu, K.; Song, B.; Gao, X.; Dai, H. X.; Zhang, J. T.; Ma, H. Y. High-energy cobalt hexacyanoferrate and carbon micro-spheres aqueous sodium-ion capacitors. J. Power Sources 2016, 303, 347–353.CrossRefGoogle Scholar
  14. [14]
    Yu, M. H.; Lin, D.; Feng, H. B.; Zeng, Y. X.; Tong, Y. X.; Lu, X. H. Boosting the energy density of carbon-based aqueous supercapacitors by optimizing the surface charge. Angew. Chem., Int. Ed. 2017, 129, 5546–5551.CrossRefGoogle Scholar
  15. [15]
    Chu, T. S.; Zhang, F.; Wang, Y.; Yang, Y. Y.; Ng, S. W. A novel electrophoretic deposited coordination supramolecular network film for detecting phosphate and biophosphate. Chem.–Eur. J. 2017, 23, 7748–7754.CrossRefGoogle Scholar
  16. [16]
    Sivakova, S.; Rowan, S. J. Nucleobases as supramolecular motifs. Chem. Soc. Rev. 2005, 34, 9–21.CrossRefGoogle Scholar
  17. [17]
    Ikkala, O.; ten Brinke, G. Functional materials based on self-assembly of polymeric supramolecules. Science 2002, 295, 2407–2409.CrossRefGoogle Scholar
  18. [18]
    Zhang, F.; Zhang, G. W.; Yao, H.; Gao, Z. T.; Chen, X. J.; Yang, Y. Y. Scalable in-situ growth of self-assembled coordination supramolecular network arrays: A novel high-performance energy storage material. Chem. Eng. J. 2018, 338, 230–239.CrossRefGoogle Scholar
  19. [19]
    Wang, Z. H.; Yao, H.; Zhang, F.; Li, W.; Yang, Y. Y.; Lu, X. H. Electrosynthesized Ni coordination supermolecular-networks-coated exfoliated graphene composite materials for high-performance asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 16476–16483.CrossRefGoogle Scholar
  20. [20]
    Zhao, F. P.; Wang, Y. Y.; Xu, X. N.; Liu, Y. L.; Song, R.; Lu, G.; Li, Y. G. Cobalt hexacyanoferrate nanoparticles as a high-rate and ultra-stable supercapacitor electrode material. ACS Appl. Mater. Interfaces 2014, 6, 11007–11012.CrossRefGoogle Scholar
  21. [21]
    Wessells, C. D.; Huggins, R. A.; Cui, Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2011, 2, 550.CrossRefGoogle Scholar
  22. [22]
    Su, D. W.; Cortie, M.; Fan, H. B.; Wang, G. X. Prussian blue nanocubes with an open framework structure coated with PEDOT as high-capacity cathodes for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1700587.CrossRefGoogle Scholar
  23. [23]
    You, Y.; Yu, X. Q.; Yin, Y. X.; Nam, K. W.; Guo, Y. G. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 2015, 8, 117–128.CrossRefGoogle Scholar
  24. [24]
    Tang, X.; Liu, H.; Su, D. W.; Notten, P. H. L.; Wang, G. X. Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries. Nano Res. 2018, 11, 3979–3990.CrossRefGoogle Scholar
  25. [25]
    Wang, J. G.; Zhang, Z. Y.; Zhang, X. Y.; Yin, X. M.; Li, X.; Liu, X. R.; Kang, F. Y.; Wei, B. Q. Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy 2017, 39, 647–653.CrossRefGoogle Scholar
  26. [26]
    Lu, K.; Song, B.; Li, K.; Zhang, J. T.; Ma, H. Y. Cobalt hexacyanoferrate nanoparticles and MoO3 thin films grown on carbon fiber cloth for efficient flexible hybrid supercapacitor. J. Power Sources 2017, 370, 98–105.CrossRefGoogle Scholar
  27. [27]
    Wang, J. G.; Zhang, Z. Y.; Liu, X. R.; Wei, B. Q. Facile synthesis of cobalt hexacyanoferrate/graphene nanocomposites for high-performance supercapacitor. Electrochim. Acta 2017, 235, 114–121.CrossRefGoogle Scholar
  28. [28]
    Zhang, Q.; Fu, L.; Luan, J. Y.; Huang, X. B.; Tang, Y. G.; Xie, H. L.; Wang, H. Y. Surface engineering induced core-shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode. J. Power Sources 2018, 395, 305–313.CrossRefGoogle Scholar
  29. [29]
    Wang, Y.; Chen, Q. W. Dual-layer-structured nickel hexacyanoferrate/MnO2 composite as a high-energy supercapacitive material based on the complementarity and interlayer concentration enhancement effect. ACS Appl. Mater. Interfaces 2014, 6, 6196–6201.CrossRefGoogle Scholar
  30. [30]
    Yang, J.; Ma, M. Z.; Sun, C. C.; Zhang, Y. F.; Huang, W.; Dong, X. C. Hybrid NiCo2S4@MnO2 heterostructures for high-performance supercapacitor electrodes. J. Mater. Chem. A 2015, 3, 1258–1264.CrossRefGoogle Scholar
  31. [31]
    Xie, M. J.; Xu, Z. C.; Duan, S. Y.; Tian, Z. F.; Zhang, Y.; Xiang, K.; Lin, M.; Guo, X. F.; Ding, W. P. Facile growth of homogeneous Ni(OH)2 coating on carbon nanosheets for high-performance asymmetric supercapacitor applications. Nano Res. 2018, 11, 216–224.CrossRefGoogle Scholar
  32. [32]
    Xiang, K.; Xu, Z. C.; Qu, T. T; Tian, Z. F.; Zhang, Y.; Wang, Y. Z.; Xie, M. J.; Guo, X. K.; Ding, W. P.; Guo, X. F. Two dimensional oxygen-vacancyrich Co3O4 nanosheets with excellent supercapacitor performances. Chem. Commun. 2017, 53, 12410–12413.CrossRefGoogle Scholar
  33. [33]
    Xie, M. J.; Duan, S. Y.; Shen, Y.; Fang, K.; Wang, Y. Z.; Lin, M.; Guo, X. F. In-situ-grown Mg(OH)2-derived hybrid α-Ni(OH)2 for highly stable supercapacitor. ACS Energy Lett. 2016, 1, 814–819.CrossRefGoogle Scholar
  34. [34]
    Sheng, L. Z.; Jiang, L. L.; Wei, T.; Zhou, Q. H.; Jiang, Y. T.; Jiang, Z. M.; Liu, Z.; Fan, Z. J. Fe(CN)6 3− ion-modified MnO2/graphene nanoribbons enabling high energy density asymmetric supercapacitors. J. Mater. Chem. A 2018, 6, 7649–7658.CrossRefGoogle Scholar
  35. [35]
    Lv, H. P.; Gao, X. J.; Xu, Q. J.; Liu, H. M.; Wang, Y. G.; Xia, Y. Y. Carbon quantum dot-induced MnO2 nanowire formation and construction of a binder-free flexible membrane with excellent superhydrophilicity and enhanced supercapacitor performance. ACS Appl. Mater. Interfaces 2017, 9, 40394–40403.CrossRefGoogle Scholar
  36. [36]
    Liu, Z. H.; Tian, X. C.; Xu, X.; He, L.; Yan, M. Y.; Han, C. H.; Li, Y.; Yang, W.; Mai, L. Q. Capacitance and voltage matching between MnO2 nanoflake cathode and Fe2O3 nanoparticle anode for high-performance asymmetric micro-supercapacitors. Nano Res. 2017, 10, 2471–2481.CrossRefGoogle Scholar
  37. [37]
    Park, S.; Shim, H. W.; Lee, C. W.; Song, H. J.; Park, I. J.; Kim, J. C.; Hong, K. S.; Kim, D. W. Tailoring uniform γ-MnO2 nanosheets on highly conductive three-dimensional current collectors for high-performance supercapacitor electrodes. Nano Res. 2015, 8, 990–1004.CrossRefGoogle Scholar
  38. [38]
    Huang, M.; Li, F.; Dong, F.; Zhang, Y. X.; Zhang, L. L. MnO2-based nanostructures for high-performance supercapacitors. J. Mater. Chem. A 2015, 3, 21380–21423.CrossRefGoogle Scholar
  39. [39]
    Zhang, Q. Z.; Zhang, D.; Miao, Z. C.; Zhang, X. L.; Chou, S. L. Research progress in MnO2-carbon based supercapacitor electrode materials. Small 2018, 14, 1702883.CrossRefGoogle Scholar
  40. [40]
    Liu, W. H.; Wang, Z. Q.; Su, Y. L.; Li, Q. W.; Zhao, Z. G.; Geng, F. X. Molecularly stacking manganese dioxide/titanium carbide sheets to produce highly flexible and conductive film electrodes with improved pseudocapacitive performances. Adv. Energy Mater. 2017, 7, 1602834.CrossRefGoogle Scholar
  41. [41]
    Das, A. K.; Bera, R.; Maitra, A.; Karan, S. K.; Paria, S.; Halder, L.; Si, S. K.; Bera, A.; Khatua, B. B. Fabrication of an advanced asymmetric supercapacitor based on a microcubical PB@MnO2 hybrid and PANI/GNP composite with excellent electrochemical behaviour. J. Mater. Chem. A 2017, 5, 22242–22254.CrossRefGoogle Scholar
  42. [42]
    Zhang, Y. Z.; Cheng, T.; Wang, Y.; Lai, W. Y.; Pang, H.; Huang, W. A simple approach to boost capacitance: Flexible supercapacitors based on manganese oxides@MOFs via chemically induced in situ self-transformation. Adv. Mater. 2016, 28, 5242–5248.CrossRefGoogle Scholar
  43. [43]
    Wang, Y.; Zhong, H.; Hu, L.; Yan, N.; Hu, H. B.; Chen, Q. W. Manganese hexacyanoferrate/MnO2 composite nanostructures as a cathode material for supercapacitors. J. Mater. Chem. A 2013, 1, 2621–2630.CrossRefGoogle Scholar
  44. [44]
    Zhang, X.; Luo, J. S.; Tang, P. Y.; Ye, X. L.; Peng, X. X.; Tang, H. L.; Sun, S. G.; Fransaer, J. A universal strategy for metal oxide anchored and binder-free carbon matrix electrode: A supercapacitor case with superior rate performance and high mass loading. Nano Energy 2017, 31, 311–321.CrossRefGoogle Scholar
  45. [45]
    Guo, B. S.; Yang, Y. Y.; Hu, Z. A.; An, Y. F.; Zhang, Q. C.; Yang, X.; Wang, X. T.; Wu, H. Y. Redox-active organic molecules functionalized nitrogen-doped porous carbon derived from metal-organic framework as electrode materials for supercapacitor. Electrochim. Acta 2017, 223, 74–84.CrossRefGoogle Scholar
  46. [46]
    Hassan, S.; Suzuki, M.; Mori, S.; El-Moneim, A. A. MnO2/carbon nanowalls composite electrode for supercapacitor application. J. Power Sources 2014, 249, 21–27.CrossRefGoogle Scholar
  47. [47]
    Chen, C. J.; Zhang, Y.; Li, Y. J.; Dai, J. Q.; Song, J. W.; Yao, Y. G.; Gong, Y. H.; Kierzewski, I.; Xie, J.; Hu, L. B. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 2017, 10, 538–545.CrossRefGoogle Scholar
  48. [48]
    Liu, R.; Ma, L. N.; Niu, G. D.; Li, X. L.; Li, E. Y.; Bai, Y.; Yuan, G. H. Oxygen-deficient bismuth oxide/graphene of ultrahigh capacitance as advanced flexible anode for asymmetric supercapacitors. Adv. Funct. Mater. 2017, 27, 1701635.CrossRefGoogle Scholar
  49. [49]
    Zhang, C. L.; Xu, Y.; Zhou, M.; Liang, L. Y.; Dong, H. S.; Wu, M. H.; Yang, Y.; Lei, Y. Potassium Prussian blue nanoparticles: A low-cost cathode material for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1604307.CrossRefGoogle Scholar
  50. [50]
    Xiong, T.; Tan, T. L.; Lu, L.; Lee, W. S. V.; Xue, J. M. Harmonizing energy and power density toward 2.7V asymmetric aqueous supercapacitor. Adv. Energy Mater. 2018, 8, 1702630.CrossRefGoogle Scholar
  51. [51]
    Li, B. X.; Rong, G. X.; Xie, Y.; Huang, L. F.; Feng, C. Q. Low-temperature synthesis of α-MnO2 hollow urchins and their application in rechargeable Li+ batteries. Inorg. Chem. 2006, 45, 6404–6410.CrossRefGoogle Scholar
  52. [52]
    Luo, Y. Q.; Luo, X.; Wu, G.; Li, Z. J.; Wang, G. Z.; Jiang, B.; Hu, Y. M.; Chao, T. T.; Ju, H. X.; Zhu, J. F. et al. Mesoporous Pd@Ru core-shell nanorods for hydrogen evolution reaction in alkaline solution. ACS Appl. Mater. Interfaces 2018, 10, 34147–34152.CrossRefGoogle Scholar
  53. [53]
    Li, W. F.; Zhang, F.; Xiang, X. D.; Zhang, X. C. Electrochemical properties and redox mechanism of Na2Ni0.4Co0.6[Fe(CN)6]_nanocrystallites as highcapacity cathode for aqueous sodium-ion batteries. J. Phys. Chem. C 2017, 121, 27805–27812.CrossRefGoogle Scholar
  54. [54]
    Zhang, H. H.; Gu, J. N.; Jiang, Y. Y.; Wang, Y. Q.; Zhao, J.; Zhang, X. X.; Wang, C. Y. Calcination removing soft template cetyl trimethyl ammonium bromide and its effects on capacitance performance of supercapacitor electrode MnO2. Energy Convers. Manage. 2014, 86, 605–613.CrossRefGoogle Scholar
  55. [55]
    Liu, N.; Su, Y. L.; Wang, Z. Q.; Wang, Z.; Xia, J. S.; Chen, Y.; Zhao, Z. G.; Li, Q. W.; Geng, F. X. Electrostatic-interaction-assisted construction of 3D networks of manganese dioxide nanosheets for flexible high-performance solid-state asymmetric supercapacitors. ACS Nano 2017, 11, 7879–7888.CrossRefGoogle Scholar
  56. [56]
    Jabeen, N.; Xia, Q. Y.; Savilov, S. V.; Aldoshin, S. M.; Yu, Y.; Xia, H. Enhanced pseudocapacitive performance of α-MnO2 by cation preinsertion. ACS Appl. Mater. Interfaces 2016, 8, 33732–33740.CrossRefGoogle Scholar
  57. [57]
    Jabeen, N.; Hussain, A.; Xia, Q.; Sun, S.; Zhu, J.; Xia, H. High-performance 2.6V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv. Mater. 2017, 29, 1700804.CrossRefGoogle Scholar
  58. [58]
    Cao, J. Y.; Wang, Y. M.; Zhou, Y.; Ouyang, J. H.; Jia, D. C.; Guo, L. X. High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes. J. Electroanal. Chem. 2013, 689, 201–206.CrossRefGoogle Scholar
  59. [59]
    Wei, X. J.; Peng, H. R.; Li, Y. H.; Yang, Y. B.; Xiao, S. H.; Peng, L.; Zhang, Y. H.; Xiao, P. In situ growth of zeolitic imidazolate framework-67-derived nanoporous carbon@K0.5Mn2O4 for high-performance 2.4V aqueous asymmetric supercapacitors. ChemSusChem 2018, 11, 3167–3174.CrossRefGoogle Scholar
  60. [60]
    Boisset, A.; Athouël, L.; Jacquemin, J.; Porion, P.; Brousse, T.; Anouti, M. Comparative performances of birnessite and cryptomelane MnO2 as electrode material in neutral aqueous lithium salt for supercapacitor application. J. Phys. Chem. C 2013, 117, 7408–7422.CrossRefGoogle Scholar
  61. [61]
    Xie, X.; Ye, M.; Liu, C.; Hsu, P. C.; Criddle, C. S.; Cui, Y. Use of low cost and easily regenerated Prussian blue cathodes for efficient electrical energy recovery in a microbial battery. Energy Environ. Sci. 2015, 8, 546–551.CrossRefGoogle Scholar
  62. [62]
    Liu, J. L.; Wang, J.; Xu, C. H.; Jiang, H.; Li, C. Z.; Zhang, L. L.; Lin, J. Y.; Shen, Z. X. Advanced energy storage devices: Basic principles, analytical methods, and rational materials design. Adv. Sci. 2018, 5, 1700322.CrossRefGoogle Scholar
  63. [63]
    Gogotsi, Y.; Penner, R. M. Energy storage in nanomaterials-capacitive, pseudocapacitive, or battery-like? ACS Nano 2018, 12, 2081–2083.CrossRefGoogle Scholar
  64. [64]
    Lau, G. C.; Sather, N. A.; Sai, H.; Waring, E. M.; Deiss-Yehiely, E.; Barreda, L.; Beeman, E. A.; Palmer, L. C.; Stupp, S. I. Oriented multiwalled organic-Co(OH)2 nanotubes for energy storage. Adv. Funct. Mater. 2018, 28, 1702320.CrossRefGoogle Scholar
  65. [65]
    Guan, B. Y.; Kushima, A.; Yu, L.; Li, S.; Li, J.; Lou, X. W. Coordination polymers derived general synthesis of multishelled mixed metal-oxide particles for hybrid supercapacitors. Adv. Mater. 2017, 29, 1605902.CrossRefGoogle Scholar
  66. [66]
    Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.CrossRefGoogle Scholar
  67. [67]
    Zhu, Y. E.; Yang, L. P.; Sheng, J.; Chen, Y. A.; Gu, H. C.; Wei, J. P.; Zhou, Z. Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv. Energy Mater. 2017, 7, 1701222.CrossRefGoogle Scholar
  68. [68]
    Han, G. Q.; Liu, Y.; Zhang, L. L.; Kan, E. J.; Zhang, S. P.; Tang, J.; Tang, W. H. MnO2 nanorods intercalating graphene oxide/polyaniline ternary composites for robust high-performance supercapacitors. Sci. Rep. 2014, 4, 4824.CrossRefGoogle Scholar
  69. [69]
    Hu, Z. M.; Xiao, X.; Chen, C.; Li, T. Q.; Huang, L.; Zhang, C. F.; Su, J.; Miao, L.; Jiang, J. J.; Zhang, Y. R. et al. Al-doped α-MnO2 for high mass-loading pseudocapacitor with excellent cycling stability. Nano Energy 2015, 11, 226–234.CrossRefGoogle Scholar
  70. [70]
    Liu, R.; Lee, S. B. MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J. Am. Chem. Soc. 2008, 130, 2942–2943.CrossRefGoogle Scholar
  71. [71]
    Li, W. Y.; He, G. J.; Shao, J. J.; Liu, Q.; Xu, K. B.; Hu, J. Q.; Parkin, I. P. Urchin-like MnO2 capped ZnO nanorods as high-rate and high-stability pseudocapacitor electrodes. Electrochim. Acta. 2015, 186, 1–6.CrossRefGoogle Scholar
  72. [72]
    Li, Y. J.; Yu, N.; Yan, P.; Li, Y. G.; Zhou, X. M.; Chen, S. L.; Wang, G. L.; Wei, T.; Fan, Z. J. Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors. J. Power Sources 2015, 300, 309–317.CrossRefGoogle Scholar
  73. [73]
    Su, X. H.; Yu, L.; Cheng, G.; Zhang, H. H.; Sun, M.; Zhang, X. F. High-performance α-MnO2 nanowire electrode for supercapacitors. Appl. Energy 2015, 153, 94–100.CrossRefGoogle Scholar
  74. [74]
    Wang, T.; Le, Q. J.; Zhang, J. M.; Zhang, Y. X.; Li, W. Carbon cloth@TNb2O5@MnO2: A rational exploration of manganese oxide for high performance supercapacitor. Electrochim. Acta. 2017, 253, 311–318.CrossRefGoogle Scholar
  75. [75]
    Wang, Y.; Lai, W. H.; Wang, N.; Jiang, Z.; Wang, X. Y.; Zou, P. C.; Lin, Z. Y.; Fan, H. J.; Kang, F. Y.; Wong, C. P. et al. A reduced graphene oxide/mixed-valence manganese oxide composite electrode for tailorable and surface mountable supercapacitors with high capacitance and superlong life. Energy Environ. Sci. 2017, 10, 941–949.CrossRefGoogle Scholar
  76. [76]
    Wang, Z. Y.; Wang, F. P.; Li, Y.; Hu, J. L.; Lu, Y. Z.; Xu, M. Interlinked multiphase Fe-doped MnO2 nanostructures: A novel design for enhanced pseudocapacitive performance. Nanoscale 2016, 8, 7309–7317.CrossRefGoogle Scholar
  77. [77]
    Xu, L. S.; Jia, M. Y.; Li, Y.; Jin, X. J.; Zhang, F. High-performance MnO2-deposited graphene/activated carbon film electrodes for flexible solid-state supercapacitor. Sci. Rep. 2017, 7, 12857.CrossRefGoogle Scholar
  78. [78]
    Yuan, C. J.; Lin, H. B.; Lu, H. Y.; Xing, E. D.; Zhang, Y. S.; Xie, B. Y. Synthesis of hierarchically porous MnO2/rice husks derived carbon composite as high-performance electrode material for supercapacitors. Appl. Energy 2016, 178, 260–268.CrossRefGoogle Scholar
  79. [79]
    Zeng, Z.; Liu, Y. Y.; Zhang, W. D.; Chevva, H.; Wei, J. J. Improved supercapacitor performance of MnO2-electrospun carbon nanofibers electrodes by mT magnetic field. J. Power Sources 2017, 358, 22–28.CrossRefGoogle Scholar
  80. [80]
    Yu, N.; Yin, H.; Zhang, W.; Liu, Y.; Tang, Z. Y.; Zhu, M. Q. High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics. Adv. Energy Mater. 2016, 6, 1501458.CrossRefGoogle Scholar
  81. [81]
    Zhang, G. W.; Zhang, F.; Yao, H.; Liu, Z. X.; Yang, Y. Y. A nickel coordination supramolecular network synergized with nitrogen-doped graphene as an advanced cathode to significantly boost the rate capability and durability of supercapacitors. J. Mater. Chem. A 2017, 5, 19036–19045.CrossRefGoogle Scholar
  82. [82]
    Wang, M. Q.; Li, Z. Q.; Wang, C. X.; Zhao, R. Z.; Li, C. X.; Guo, D. X.; Zhang, L. Y.; Yin, L. W. Novel core-shell FeOF/Ni(OH)2 hierarchical nanostructure for all-solid-state flexible supercapacitors with enhanced performance. Adv. Funct. Mater. 2017, 27, 1701014.CrossRefGoogle Scholar
  83. [83]
    Zuo, W. H.; Xie, C. Y.; Xu, P.; Li, Y. Y.; Liu, J. P. A novel phasetransformation activation process toward Ni–Mn–O nanoprism arrays for 2.4V ultrahigh-voltage aqueous supercapacitors. Adv. Mater. 2017, 29, 1703463.CrossRefGoogle Scholar
  84. [84]
    Owusu, K. A.; Qu, L. B.; Li, J. T.; Wang, Z. Y.; Zhao, K. N.; Yang, C.; Hercule, K. M.; Lin, C.; Shi, C. W.; Wei, Q. L. et al. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun. 2017, 8, 14264.CrossRefGoogle Scholar
  85. [85]
    Wang, G. M.; Wang, H. Y.; Lu, X. H.; Ling, Y. C.; Yu, M. H.; Zhai, T.; Tong, Y. X.; Li, Y. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 2014, 26, 2676–2682.CrossRefGoogle Scholar
  86. [86]
    Liu, L. Y.; Shen, B. S.; Jiang, D.; Guo, R. S.; Kong, L. B.; Yan, X. B. Watchband-like supercapacitors with body temperature inducible shape memory ability. Adv. Energy Mater. 2016, 6, 1600763.CrossRefGoogle Scholar
  87. [87]
    Ng, K. C.; Zhang, S. W.; Peng, C.; Chen, G. Z. Individual and bipolarly stacked asymmetrical aqueous supercapacitors of CNTs/SnO2 and CNTs/MnO2 nanocomposites. J. Electrochem. Soc. 2009, 156, A846.CrossRefGoogle Scholar
  88. [88]
    Wang, L.; Ouyang, Y.; Jiao, X. Y.; Xia, X. F.; Lei, W.; Hao, Q. L. Polyaniline-assisted growth of MnO2 ultrathin nanosheets on graphene and porous graphene for asymmetric supercapacitor with enhanced energy density. Chem. Eng. J. 2018, 334, 1–9.CrossRefGoogle Scholar
  89. [89]
    Zhang, Y. B.; Wang, B.; Liu, F.; Cheng, J. P.; Zhang, X. W.; Zhang, L. Full synergistic contribution of electrodeposited three-dimensional NiCo2O4@MnO2 nanosheet networks electrode for asymmetric supercapacitors. Nano Energy 2016, 27, 627–637.CrossRefGoogle Scholar
  90. [90]
    Cho, S.; Patil, B.; Yu, S.; Ahn, S.; Hwang, J.; Park, C.; Do, K.; Ahn, H. Flexible, Swiss roll, fiber-shaped, asymmetric supercapacitor using MnO2 and Fe2O3 on carbon fibers. Electrochim. Acta 2018, 269, 499–508.CrossRefGoogle Scholar
  91. [91]
    Shabangoli, Y.; Rahmanifar, M. S.; El-Kady, M. F.; Noori, A.; Mousavi, M. F.; Kaner, R. B. Thionine functionalized 3D graphene aerogel: Combining simplicity and efficiency in fabrication of a metal-free redox supercapacitor. Adv. Energy Mater. 2018, 8, 1802869.CrossRefGoogle Scholar
  92. [92]
    Huang, Z. H.; Li, X. Q.; Xiang, X. X.; Gao, T. T.; Zhang, Y. J.; Xiao, D. Porous NiCoP in situ grown on Ni foam using molten-salt electrodeposition for asymmetric supercapacitors. J. Mater. Chem. A 2018, 6, 23746–23756.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Gaowei Zhang
    • 1
  • Hua Yao
    • 1
  • Feng Zhang
    • 1
    • 2
  • Zitao Gao
    • 1
  • Qiujun Li
    • 1
  • Yangyi Yang
    • 1
    Email author
  • Xihong Lu
    • 1
  1. 1.School of Materials Science and Engineering, School of ChemistrySun Yat-sen UniversityGuangzhouChina
  2. 2.College of Chemistry and Pharmaceutical EngineeringHuanghuai UniversityZhumadianChina

Personalised recommendations