Advertisement

Dependence of interface energetics and kinetics on catalyst loading in a photoelectrochemical system

  • Yumin He
  • Srinivas Vanka
  • Tianyue Gao
  • Da He
  • Jeremy Espano
  • Yanyan Zhao
  • Qi Dong
  • Chaochao Lang
  • Yongjie Wang
  • Thomas W. Hamann
  • Zetian Mi
  • Dunwei WangEmail author
Research Article
  • 33 Downloads

Abstract

Solar hydrogen production by the photoelectrochemical method promises a means to store solar energy. While it is generally understood that the process is highly sensitive to the nature of the interface between the semiconductor and the electrolyte, a detailed understanding of this interface is still missing. For instance, few prior studies have established a clear relationship between the interface energetics and the catalyst loading amount. Here we aim to study this relationship on a prototypical Si-based photoelectrochemical system. Two types of interfaces were examined, one with GaN nanowires as a protection layer and one without. It was found that when GaN was present, higher Pt loading (> 0.1 μg/cm2) led to not only better water reduction (and, hence, hydrogen evolution) kinetics but also more favorable interface energetics for greater photovoltages. In the absence of the protection layer, by stark contrast, increased Pt loading exhibited no measurable influence on the interface energetics, and the main difference was observed only in the hydrogen evolution kinetics. The study sheds new light on the importance of interface engineering for further improvement of photoelectrochemical systems, especially concerning the role of catalysts and protection layers.

Keywords

photoelectrochemistry water splitting Si hydrogen evolution catalyst nanowires 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors gratefully acknowledge research support from the HydroGEN Advanced Water Splitting Materials Consortium, established as part of the Energy Materials Network under the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, under Award Number DE-EE0008086 XPS and TEM was performed at the Center for Nanoscale Systems (CNS) in Harvard University.

Supplementary material

12274_2019_2346_MOESM1_ESM.pdf (2.3 mb)
Dependence of interface energetics and kinetics on catalyst loading in a photoelectrochemical system

References

  1. [1]
    Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351, aad1920.CrossRefGoogle Scholar
  2. [2]
    Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; Forman, A. J.; Chen, Z. B.; Deutsch, T. G.; James, B. D.; Baum, K. N.; Baum, G. N.; Ardo, S. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 2013, 6, 1983–2002.CrossRefGoogle Scholar
  3. [3]
    He, Y. M.; Wang, D. W. Toward practical solar hydrogen production. Chem 2018, 4, 405–408.CrossRefGoogle Scholar
  4. [4]
    He, Y. M.; Hamann, T.; Wang, D. W. Thin film photoelectrodes for solar water splitting. Chem. Soc. Rev., in press, DOI: 10.1039/C8CS00868J.Google Scholar
  5. [5]
    Thorne, J. E.; Li, S.; Du, C.; Qin, G. W.; Wang, D. W. Energetics at the surface of photoelectrodes and its influence on the photoelectrochemical properties. J. Phys. Chem. Lett. 2015, 6, 4083–4088.CrossRefGoogle Scholar
  6. [6]
    Du, C.; Yang, X. G.; Mayer, M. T.; Hoyt, H.; Xie, J.; McMahon, G.; Bischoping, G.; Wang, D. W. Hematite-based water splitting with low turn-on voltages. Angew. Chem., Int. Ed. 2013, 52, 12692–12695.CrossRefGoogle Scholar
  7. [7]
    Du, C.; Zhang, M.; Jang, J.-W.; Liu, Y.; Liu, G.-Y.; Wang, D. W. Observation and alteration of surface states of hematite photoelectrodes. J. Phys. Chem. C 2014, 118, 17054–17059.CrossRefGoogle Scholar
  8. [8]
    Lin, F. D.; Boettcher, S. W. Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nat. Mater. 2014, 13, 81–86.CrossRefGoogle Scholar
  9. [9]
    Qiu, J. J.; Hajibabaei, H.; Nellist, M. R.; Laskowski, F. A. L.; Hamann, T. W.; Boettcher, S. W. Direct in situ measurement of charge transfer processes during photoelectrochemical water oxidation on catalyzed hematite. ACS Cent. Sci. 2017, 3, 1015–1025.CrossRefGoogle Scholar
  10. [10]
    Qiu, J. J.; Hajibabaei, H.; Nellist, M. R.; Laskowski, F. A. L.; Oener, S. Z.; Hamann, T. W.; Boettcher, S. W. Catalyst deposition on photoanodes: The roles of intrinsic catalytic activity, catalyst electrical conductivity, and semiconductor morphology. ACS Energy Lett. 2018, 3, 961–969.CrossRefGoogle Scholar
  11. [11]
    Nellist, M. R.; Laskowski, F. A. L.; Qiu, J. J.; Hajibabaei, H.; Sivula, K.; Hamann, T. W.; Boettcher, S. W. Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces. Nat. Energy 2018, 3, 46–52.CrossRefGoogle Scholar
  12. [12]
    Barroso, M.; Cowan, A. J.; Pendlebury, S. R.; Grätzel, M.; Klug, D. R.; Durrant, J. R. The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation. J. Am. Chem. Soc. 2011, 133, 14868–14871.CrossRefGoogle Scholar
  13. [13]
    Barroso, M.; Mesa, C. A.; Pendlebury, S. R.; Cowan, A. J.; Hisatomi, T.; Sivula, K.; Grätzel, M.; Klug, D. R.; Durrant, J. R. Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. Proc. Natl. Acad. Sci. USA 2012, 109, 15640–15645.CrossRefGoogle Scholar
  14. [14]
    Pesci, F. M.; Cowan, A. J.; Alexander, B. D.; Durrant, J. R.; Klug, D. R. Charge carrier dynamics on mesoporous WO3 during water splitting. J. Phys. Chem. Lett. 2011, 2, 1900–1903.CrossRefGoogle Scholar
  15. [15]
    Carroll, G. M.; Gamelin, D. R. Kinetic analysis of photoelectrochemical water oxidation by mesostructured Co-Pi/α-Fe2O3 photoanodes. J. Mater. Chem. A 2016, 4, 2986–2994.CrossRefGoogle Scholar
  16. [16]
    Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Bisquert, J.; Hamann, T. W. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co-Pi”-coated hematite electrodes. J. Am. Chem. Soc. 2012, 134, 16693–16700.CrossRefGoogle Scholar
  17. [17]
    Riha, S. C.; Klahr, B. M.; Tyo, E. C.; Seifert, S.; Vajda, S.; Pellin, M. J.; Hamann, T. W.; Martinson, A. B. F. Atomic layer deposition of a submonolayer catalyst for the enhanced photoelectrochemical performance of water oxidation with hematite. ACS Nano 2013, 7, 2396–2405.CrossRefGoogle Scholar
  18. [18]
    Cummings, C. Y.; Marken, F.; Peter, L. M.; Tahir, A. A.; Wijayantha, K. G. U. Kinetics and mechanism of light-driven oxygen evolution at thin film α-Fe2O3 electrodes. Chem. Commun. 2012, 48, 2027–2029.CrossRefGoogle Scholar
  19. [19]
    Zachäus, C.; Abdi, F. F.; Peter, L. M.; van de Krol, R. Photocurrent of BiVO4 is limited by surface recombination, not surface catalysis. Chem. Sci. 2017, 8, 3712–3719.CrossRefGoogle Scholar
  20. [20]
    Li, W.; He, D.; Sheehan, S. W.; He, Y. M.; Thorne, J. E.; Yao, X. H.; Brudvig, G. W.; Wang, D. W. Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation. Energy Environ. Sci. 2016, 9, 1794–1802.CrossRefGoogle Scholar
  21. [21]
    Thorne, J. E.; Jang, J.-W.; Liu, E. Y.; Wang, D. W. Understanding the origin of photoelectrode performance enhancement by probing surface kinetics. Chem. Sci. 2016, 7, 3347–3354.CrossRefGoogle Scholar
  22. [22]
    He, Y. M.; Ma, P. Y.; Zhu, S. S.; Liu, M. D.; Dong, Q.; Espano, J.; Yao, X. H.; Wang, D. W. Photo-induced performance enhancement of tantalum nitride for solar water oxidation. Joule 2017, 1, 831–842.CrossRefGoogle Scholar
  23. [23]
    Thorne, J. E.; Zhao, Y. Y.; He, D.; Fan, S. Z.; Vanka, S.; Mi, Z. T.; Wang, D. W. Understanding the role of co-catalysts on silicon photocathodes using intensity modulated photocurrent spectroscopy. Phys. Chem. Chem. Phys. 2017, 19, 29653–29659.CrossRefGoogle Scholar
  24. [24]
    Gao, Y.; Hamann, T. W. Quantitative hole collection for photoelectrochemical water oxidation with CuWO4. Chem. Commun. 2017, 53, 1285–1288.CrossRefGoogle Scholar
  25. [25]
    Liu, G. J.; Ye, S.; Yan, P. L.; Xiong, F.-Q.; Fu, P.; Wang, Z. L.; Chen, Z.; Shi, J. Y.; Li, C. Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting. Energy Environ. Sci. 2016, 9, 1327–1334.CrossRefGoogle Scholar
  26. [26]
    Vanka, S.; Arca, E.; Cheng, S. B.; Sun, K.; Botton, G. A.; Teeter, G.; Mi, Z. T. High efficiency Si photocathode protected by multifunctional GaN nanostructures. Nano Lett. 2018, 18, 6530–6537.CrossRefGoogle Scholar
  27. [27]
    Fan, S. Z.; AlOtaibi, B.; Woo, S. Y.; Wang, Y. J.; Botton, G. A.; Mi, Z. T. High efficiency solar-to-hydrogen conversion on a monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode. Nano Lett. 2015, 15, 2721–2726.CrossRefGoogle Scholar
  28. [28]
    Wang, Y. C.; Fan, S. Z.; AlOtaibi, B.; Wang, Y. J.; Li, L.; Mi, Z. T. A monolithically integrated gallium nitride nanowire/silicon solar cell photocathode for selective carbon dioxide reduction to methane. Chem.—Eur. J. 2016, 22, 8809–8813.CrossRefGoogle Scholar
  29. [29]
    Cheng, Q.; Fan, W.; He, Y.; Ma, P.; Vanka, S.; Fan, S.; Mi, Z.; Wang, D. Photorechargeable high voltage redox battery enabled by Ta3N5 and GaN/Si dual-photoelectrode. Adv. Mater. 2017, 29, 1700312.CrossRefGoogle Scholar
  30. [30]
    Chu, S.; Ou, P. F.; Ghamari, P.; Vanka, S.; Zhou, B. W.; Shih, I.; Song, J.; Mi, Z. T. Photoelectrochemical CO2 reduction into syngas with the metal/oxide interface. J. Am. Chem. Soc. 2018, 140, 7869–7877.CrossRefGoogle Scholar
  31. [31]
    Yuan, G. B.; Aruda, K.; Zhou, S.; Levine, A.; Xie, J.; Wang, D. W. Understanding the origin of the low performance of chemically grown silicon nanowires for solar energy conversion. Angew. Chem., Int. Ed. 2011, 50, 2334–2338.CrossRefGoogle Scholar
  32. [32]
    Liu, R.; Yuan, G. B.; Joe, C. L.; Lightburn, T. E.; Tan, K. L.; Wang, D. W. Silicon nanowires as photoelectrodes for carbon dioxide fixation. Angew. Chem., Int. Ed. 2012, 51, 6709–6712.CrossRefGoogle Scholar
  33. [33]
    Liu, R.; Stephani, C.; Han, J. J.; Tan, K. L.; Wang, D. W. Silicon nanowires show improved performance as photocathode for catalyzed carbon dioxide photofixation. Angew. Chem., Int. Ed. 2013, 52, 4225–4228.CrossRefGoogle Scholar
  34. [34]
    Dai, P. C.; Xie, J.; Mayer, M. T.; Yang, X. G.; Zhan, J. H.; Wang, D. W. Solar hydrogen generation by silicon nanowires modified with platinum nanoparticle catalysts by atomic layer deposition. Angew. Chem., Int. Ed. 2013, 52, 11119–11123.CrossRefGoogle Scholar
  35. [35]
    Kemppainen, E.; Bodin, A.; Sebok, B.; Pedersen, T.; Seger, B.; Mei, B.; Bae, D.; Vesborg, P. C. K.; Halme, J.; Hansen, O. et al. Scalability and feasibility of photoelectrochemical H2 evolution: The ultimate limit of Pt nanoparticle as an HER catalyst. Energy Environ. Sci. 2015, 8, 2991–2999.CrossRefGoogle Scholar
  36. [36]
    Ponomarev, E. A.; Peter, L. M. A generalized theory of intensity modulated photocurrent spectroscopy (IMPS). J. Electroanal. Chem. 1995, 396, 219–226.CrossRefGoogle Scholar
  37. [37]
    Peter, L. M.; Ponomarev, E. A.; Fermín, D. J. Intensity-modulated photocurrent spectroscopy: Reconciliation of phenomenological analysis with multistep electron transfer mechanisms. J. Electroanal. Chem. 1997, 427, 79–96.CrossRefGoogle Scholar
  38. [38]
    Dai, P. C.; Li, W.; Xie, J.; He, Y. M.; Thorne, J.; McMahon, G.; Zhan, J. H.; Wang, D. W. Forming buried junctions to enhance the photovoltage generated by cuprous oxide in aqueous solutions. Angew. Chem., Int. Ed. 2014, 53, 13493–13497.CrossRefGoogle Scholar
  39. [39]
    Nielander, A. C.; Shaner, M. R.; Papadantonakis, K. M.; Francis, S. A.; Lewis, N. S. A taxonomy for solar fuels generators. Energy Environ. Sci. 2015, 8, 16–25.CrossRefGoogle Scholar
  40. [40]
    Lewis, N. S. Chemical control of charge transfer and recombination at semiconductor photoelectrode surfaces. Inorg. Chem. 2005, 44, 6900–6911.CrossRefGoogle Scholar
  41. [41]
    Liu, G. J.; Shi, J. Y.; Zhang, F. X.; Chen, Z.; Han, J. F.; Ding, C. M.; Chen, S. S.; Wang, Z. L.; Han, H. X.; Li, C. A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting. Angew. Chem., Int. Ed. 2014, 53, 7295–7299.CrossRefGoogle Scholar
  42. [42]
    Ding, C. M.; Shi, J. Y.; Wang, Z. L.; Li, C. Photoelectrocatalytic water splitting: Significance of cocatalysts, electrolyte, and interfaces. ACS Catal. 2017, 7, 675–688.CrossRefGoogle Scholar
  43. [43]
    Hu, S.; Shaner, M. R.; Beardslee, J. A.; Lichterman, M.; Brunschwig, B. S.; Lewis, N. S. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 2014, 344, 1005–1009.CrossRefGoogle Scholar
  44. [44]
    Kang, D.; Young, J. L.; Lim, H.; Klein, W. E.; Chen, H. D.; Xi, Y. Z.; Gai, B. J.; Deutsch, T. G.; Yoon, J. Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting. Nat. Energy 2017, 2, 17043.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yumin He
    • 1
  • Srinivas Vanka
    • 2
    • 4
  • Tianyue Gao
    • 1
  • Da He
    • 1
  • Jeremy Espano
    • 1
  • Yanyan Zhao
    • 1
  • Qi Dong
    • 1
  • Chaochao Lang
    • 1
  • Yongjie Wang
    • 2
  • Thomas W. Hamann
    • 3
  • Zetian Mi
    • 2
  • Dunwei Wang
    • 1
    Email author
  1. 1.Department of Chemistry, Merkert Chemistry CenterBoston CollegeChestnut HillUSA
  2. 2.Department of Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborUSA
  3. 3.Department of ChemistryMichigan State UniversityEast LansingUSA
  4. 4.Department of Electrical and Computer EngineeringMcGill UniversityMontrealCanada

Personalised recommendations