Advertisement

Sustained co-delivery of gemcitabine and cis-platinum via biodegradable thermo-sensitive hydrogel for synergistic combination therapy of pancreatic cancer

  • Kun Shi
  • Bingxin Xue
  • Yanpeng Jia
  • Liping Yuan
  • Ruxia Han
  • Fan Yang
  • Jinrong Peng
  • Zhiyong QianEmail author
Research Article
  • 22 Downloads

Abstract

Pancreatic cancer is one of the most devastating cancers with poor prognosis and no significant change in the survival rate over the past decades. Localized targeted drug delivery through interventional endoscopic ultrasonography-guided fine-needle injection (EUS-FNI) is an attractive and minimally invasive strategy for inoperable pancreatic cancer. An injectable in-situ formed long-lasting drug delivery system is a promising alternative for the localized treatment of pancreatic cancer via EUS-FNI. Here, a biodegradable thermo-sensitive copolymer hydrogel for the co-delivery of anticancer agents gemcitabine (GEM) and cis-platinum (DDP) was developed. This hydrogel is a free flowable liquid at room temperature that changes into a semi-solid hydrogel following injection in response to the physiological temperature. Both in vitro and in vivo drug release behaviors indicate sustained drug release of this delivery system. Synergistic cellular proliferation inhibition and desirable apoptosis promotion have been found when pancreatic cancer Bxpc-3 cells were co-cultured with this GEM-DDP/hydrogel system. After a single intratumoral injection, the dual-drug loaded hydrogel formulation exhibited superior anti-tumor efficacy and minimized systemic side effect on pancreatic cancer xenograft mouse model in comparison to the intravenously injected free GEM and DDP combination. In addition, a strong synergistic therapeutic effect of the GEM-DDP/hydrogel system against pancreatic cancer has been found in vitro and in vivo compared to the single-drug loaded hydrogel composites. The obtained findings suggest this developed thermo-sensitive copolymer hydrogel system as a potential universal carrier for the localized targeted delivery of multi-drugs, for use in a variety of inoperable solid tumors.

Keywords

localized drug delivery sustained release thermo-sensitive hydrogel combination therapy pancreatic cancer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Fund for Distinguished Young Scholars (No. 31525009), the National Natural Science Foundation of China (Nos. 31800797 and 31771096), the National Key Research and Development Program of China (No. 2017YFC1103502), the China Postdoctoral Science Foundation funded project (No. 2018M631094), the Postdoctoral Innovation Talents Support Program (No. BX20180207), and 1·3·5 project for disciplines of excellence, West China Hospital, Sichuan University.

Supplementary material

12274_2019_2342_MOESM1_ESM.pdf (2 mb)
Sustained co-delivery of gemcitabine and cis-platinum via biodegradable thermo-sensitive hydrogel for synergistic combination therapy of pancreatic cancer

References

  1. [1]
    Pai, M.; Spalding, D. Pancreatic cancer. Medicine 2015, 43, 329–333.CrossRefGoogle Scholar
  2. [2]
    Eckel, F.; Schneider, G.; Schmid, R. M. Pancreatic cancer: A review of recent advances. Expert Opin. Investig. Drugs 2006, 15, 1395–1410.CrossRefGoogle Scholar
  3. [3]
    Yang, C. B.; Chan, K. K.; Lin, W. J.; Soehartono, A. M.; Lin, G. M.; Toh, H.; Yoon, H. S.; Chen, C. K.; Yong, K. T. Biodegradable nanocarriers for small interfering ribonucleic acid (siRNA) co-delivery strategy increase the chemosensitivity of pancreatic cancer cells to gemcitabine. Nano Res. 2017, 10, 3049–3067.CrossRefGoogle Scholar
  4. [4]
    Rozengurt, E.; Sinnett-Smith, J.; Eibl, G. Yes-associated protein (YAP) in pancreatic cancer: At the epicenter of a targetable signaling network associated with patient survival. Signal Transduct. Target Ther. 2018, 3, 11.CrossRefGoogle Scholar
  5. [5]
    Gresham, G. K.; Wells, G. A.; Gill, S.; Cameron, C.; Jonker, D. J. Chemotherapy regimens for advanced pancreatic cancer: A systematic review and network meta-analysis. BMC Cancer 2014, 14, 471.CrossRefGoogle Scholar
  6. [6]
    Lee, H. S.; Park, S. W. Systemic chemotherapy in advanced pancreatic cancer. Gut Liver 2016, 10, 340–347.Google Scholar
  7. [7]
    Liu, L.; Xiong, X. Y.; Shen, M.; Ru, D.; Gao, P.; Zhang, X. Y.; Huang, C.; Sun Y.; Li, H.; Duan, Y. R. Co-delivery of triptolide and curcumin for ovarian cancer targeting therapy via mPEG-DPPE/CaP nanoparticle. J. Biomed. Nanotechnol. 2018, 14, 1761–1772.CrossRefGoogle Scholar
  8. [8]
    Provenzano, P. P.; Cuevas, C.; Chang, A. E.; Goel, V. K.; Von Hoff, D. D.; Hingorani, S. R. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 2012, 21, 418–429.CrossRefGoogle Scholar
  9. [9]
    Feig, C.; Gopinathan, A.; Neesse, A.; Chan, D. S.; Cook, N.; Tuveson, D. A. The pancreas cancer microenvironment. Clin. Cancer Res. 2012, 18, 4266–4276.CrossRefGoogle Scholar
  10. [10]
    Vandana, M.; Sahoo, S. K. Long circulation and cytotoxicity of PEGylated gemcitabine and its potential for the treatment of pancreatic cancer. Biomaterials 2010, 31, 9340–9356.CrossRefGoogle Scholar
  11. [11]
    Khan, S.; Chauhan, N.; Yallapu, M. M.; Ebeling, M. C.; Balakrishna, S.; Ellis, R. T.; Thompson, P. A.; Balabathula, P.; Behrman, S. W.; Zafar, N. et al. Nanoparticle formulation of ormeloxifene for pancreatic cancer. Biomaterials 2015, 53, 731–743.CrossRefGoogle Scholar
  12. [12]
    Jiang, L.; Ding, Y.; Xue, X. L.; Zhou, S. S.; Li, C.; Zhang, X. K.; Jiang, X. Q. Entrapping multifunctional dendritic nanoparticles into a hydrogel for local therapeutic delivery and synergetic immunochemotherapy. Nano Res. 2018, 11, 6062–6073.CrossRefGoogle Scholar
  13. [13]
    Song, Q. Q.; Zhang, R. S.; Lei, L.; Li, X. Y. Self-assembly of succinated paclitaxel into supramolecular hydrogel for local cancer chemotherapy. J. Biomed. Nanotechnol. 2018, 14, 1471–1476.CrossRefGoogle Scholar
  14. [14]
    Bilalis, P.; Skoulas, D.; Karatzas, A.; Marakis, J.; Stamogiannos, A.; Tsimblouli, C.; Sereti, E.; Stratikos, E.; Dimas, K.; Vlassopoulos, D. et al. Self-healing pH-and enzyme stimuli-responsive hydrogels for targeted delivery of gemcitabine to treat pancreatic cancer. Biomacromolecules 2018, 19, 3840–3852.CrossRefGoogle Scholar
  15. [15]
    Indolfi, L.; Ligorio, M.; Ting, D. T.; Xega, K.; Tzafriri, A. R.; Bersani, F.; Aceto, N.; Thapar, V.; Fuchs, B. C.; Deshpande, V. et al. A tunable delivery platform to provide local chemotherapy for pancreatic ductal adenocarcinoma. Biomaterials 2016, 93, 71–82.CrossRefGoogle Scholar
  16. [16]
    Yang, B. W.; Gu, Z.; Chen, Y. Nanomedicine-augmented cancer-localized treatment by 3D theranostic implants. J. Biomed. Nanotechnol. 2017, 13, 871–890.CrossRefGoogle Scholar
  17. [17]
    Yang, W. J.; Zhou, P.; Liang, L. J.; Cao, Y. P.; Qiao, J. Q.; Li, X. H.; Teng, Z. G.; Wang, L. H. Nanogel-incorporated injectable hydrogel for synergistic therapy based on sequential local delivery of combretastatin-A4 phosphate (CA4P) and doxorubicin (DOX). ACS Appl. Mater. Interfaces 2018, 10, 18560–18573.CrossRefGoogle Scholar
  18. [18]
    Norouzi, M.; Nazari, B.; Miller, D. W. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov. Today 2016, 21, 1835–1849.CrossRefGoogle Scholar
  19. [19]
    Fakhari, A.; Subramony, J. A. Engineered in-situ depot-forming hydrogels for intratumoral drug delivery. J. Control. Release 2015, 220, 465–475.CrossRefGoogle Scholar
  20. [20]
    Jeong, B.; Kim, S. W.; Bae, Y. H. Thermosensitive sol-gel reversible hydrogels. Adv. Drug Deliv. Rev. 2012, 64, 154–162.CrossRefGoogle Scholar
  21. [21]
    Gong, C.; Qi, T.; Wei, X.; Qu, Y.; Wu, Q.; Luo, F.; Qian, Z. Thermosensitive polymeric hydrogels as drug delivery systems. Curr. Med. Chem. 2013, 20, 79–94.CrossRefGoogle Scholar
  22. [22]
    Shen, W. J.; Chen, X. B.; Luan, J. B.; Wang, D. N.; Yu, L.; Ding, J. D. Sustained codelivery of cisplatin and paclitaxel via an injectable prodrug hydrogel for ovarian cancer treatment. ACS Appl. Mater. Interfaces 2017, 9, 40031–40046.CrossRefGoogle Scholar
  23. [23]
    Du, C.; Wang, Y. Y.; Shi, K.; Zhao, M. Y.; Tu, L.; Yu, Y.; Li, Z.; Luo, F.; Qian, Z. Y. Efficient suppression of liver metastasis cancers by paclitaxel loaded nanoparticles in PDLLA-PEG-PDLLA thermosensitive hydrogel composites. J. Biomed. Nanotechnol. 2017, 13, 1545–1556.CrossRefGoogle Scholar
  24. [24]
    Kim, D. Y.; Kwon, D. Y.; Kwon, J. S.; Park, J. H.; Park, S. H.; Oh, H. J.; Kim, J. H.; Min, B. H.; Park, K.; Kim, M. S. Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot. Biomaterials 2016, 85, 232–245.CrossRefGoogle Scholar
  25. [25]
    Takakura, K.; Koido, S. Direct therapeutic intervention for advanced pancreatic cancer. World J. Clin. Oncol. 2015, 6, 216–219.CrossRefGoogle Scholar
  26. [26]
    Neesse, A.; Michl, P.; Frese, K. K.; Feig, C.; Cook, N.; Jacobetz, M. A.; Lolkema, M. P.; Buchholz, M.; Olive, K. P.; Gress, T. M. et al. Stromal biology and therapy in pancreatic cancer. Gut 2011, 60, 861–868.CrossRefGoogle Scholar
  27. [27]
    Hilbig, A.; Oettle, H. Gemcitabine in the treatment of metastatic pancreatic cancer. Expert Rev. Anticancer Ther. 2008, 8, 511–523.CrossRefGoogle Scholar
  28. [28]
    Dai, J. T.; Zhang, Y.; Li, H. C.; Deng, Y. H.; Elzatahry, A. A.; Alghamdi, A.; Fu, D. L.; Jiang, Y. J.; Zhao, D. Y. Enhancement of gemcitabine against pancreatic cancer by loading in mesoporous silica vesicles. Chin Chem. Lett. 2017, 28, 531–536.CrossRefGoogle Scholar
  29. [29]
    Poon, C.; He, C. B.; Liu, D. M.; Lu, K. D.; Lin, W. B. Self-assembled nanoscale coordination polymers carrying oxaliplatin and gemcitabine for synergistic combination therapy of pancreatic cancer. J. Control. Release 2015, 201, 90–99.CrossRefGoogle Scholar
  30. [30]
    Mukherjee, S.; Hurt, C. N.; Bridgewater, J.; Falk, S.; Cummins, S.; Wasan, H.; Crosby, T.; Jephcott, C.; Roy, R.; Radhakrishna, G. et al. Gemcitabine-based or capecitabine-based chemoradiotherapy for locally advanced pancreatic cancer (SCALOP): A multicentre, randomised, phase 2 trial. Lancet Oncol. 2013, 14, 317–326.CrossRefGoogle Scholar
  31. [31]
    Philip, P. A. Gemcitabine and platinum combinations in pancreatic cancer. Cancer 2002, 95, 908–911.CrossRefGoogle Scholar
  32. [32]
    Symon, Z.; Davis, M.; McGinn, C. J.; Zalupski, M. M.; Lawrence, T. S. Concurrent chemoradiotherapy with gemcitabine and cisplatin for pancreatic cancer: From the laboratory to the clinic. Int. J. Radiat. Oncol. Biol. Phys. 2002, 53, 140–145.CrossRefGoogle Scholar
  33. [33]
    Colucci, G.; Labianca, R.; Di Costanzo, F.; Gebbia, V.; Cartenì, G.; Massidda, B.; Dapretto, E.; Manzione, L.; Piazza, E.; Sannicolò, M. et al. Randomized phase III trial of gemcitabine plus cisplatin compared with single-agent gemcitabine as first-line treatment of patients with advanced pancreatic cancer: The GIP-1 study. J. Clin. Oncol. 2010, 28, 1645–1651.CrossRefGoogle Scholar
  34. [34]
    Miao, L.; Guo, S. T.; Zhang, J.; Kim, W. Y.; Huang, L. Nanoparticles with precise ratiometric co-loading and co-delivery of gemcitabine monophosphate and cisplatin for treatment of bladder cancer. Adv. Funct. Mater. 2014, 24, 6601–6611.CrossRefGoogle Scholar
  35. [35]
    Xiong, H. Q.; Carr, K.; Abbruzzese, J. L. Cytotoxic chemotherapy for pancreatic cancer. Drugs 2006, 66, 1059–1072.CrossRefGoogle Scholar
  36. [36]
    Wei, L. Y.; Chen, J. J.; Zhao, S. H.; Ding, J. X.; Chen, X. S. Thermo-sensitive polypeptide hydrogel for locally sequential delivery of two-pronged antitumor drugs. Acta Biomater. 2017, 58, 44–53.CrossRefGoogle Scholar
  37. [37]
    Shi, K.; Wang, Y. L.; Qu, Y.; Liao, J. F.; Chu, B. Y.; Zhang, H. P.; Luo, F.; Qian, Z. Y. Synthesis, characterization, and application of reversible PDLLA-PEGPDLLA copolymer thermogels in vitro and in vivo. Sci. Rep. 2016, 6, 19077.CrossRefGoogle Scholar
  38. [38]
    Chou, T. C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res, 2010, 70, 440–446.CrossRefGoogle Scholar
  39. [39]
    Cui, S. Q.; Yu, L.; Ding, J. D. Semi-bald micelles and corresponding percolated micelle networks of thermogels. Macromolecules 2018, 51, 6405–6420.CrossRefGoogle Scholar
  40. [40]
    Wang, W. W.; Song, H. J.; Zhang, J.; Li, P.; Li, C.; Wang, C.; Kong, D. L.; Zhao, Q. An injectable, thermosensitive and multicompartment hydrogel for simultaneous encapsulation and independent release of a drug cocktail as an effective combination therapy platform. J. Control. Release 2015, 203, 57–66.CrossRefGoogle Scholar
  41. [41]
    Besançon, O. G.; Tytgat, G. A. M.; Meinsma, R.; Leen, R.; Hoebink, J.; Kalayda, G. V.; Jaehde, U.; Caron, H. N.; van Kuilenburg, A. B. P. Synergistic interaction between cisplatin and gemcitabine in neuroblastoma cell lines and multicellular tumor spheroids. Cancer Lett. 2012, 319, 23–30.CrossRefGoogle Scholar
  42. [42]
    Moufarij, M. A.; Phillips, D. R.; Cullinane, C. Gemcitabine potentiates cisplatin cytotoxicity and inhibits repair of cisplatin-DNA damage in ovarian cancer cell lines. Mol. Pharmacol. 2003, 63, 862–869.CrossRefGoogle Scholar
  43. [43]
    Crul, M.; van Waardenburg, R. C. A. M.; Bocxe, S.; van Eijndhoven, M. A. J.; Pluim, D.; Beijnen, J. H.; Schellens, J. H. M. DNA repair mechanisms involved in gemcitabine cytotoxicity and in the interaction between gemcitabine and cisplatin. Biochem. Pharmacol. 2003, 65, 275–282.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kun Shi
    • 1
  • Bingxin Xue
    • 1
  • Yanpeng Jia
    • 1
  • Liping Yuan
    • 1
  • Ruxia Han
    • 1
  • Fan Yang
    • 1
  • Jinrong Peng
    • 1
  • Zhiyong Qian
    • 1
    Email author
  1. 1.State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation CenterChengduChina

Personalised recommendations