Advertisement

Nano Research

, Volume 12, Issue 4, pp 897–904 | Cite as

Polygonal multi-polymorphed Li4Ti5O12@rutile TiO2 as anodes in lithium-ion batteries

  • Chang Hyun Hwang
  • Hee-eun Kim
  • Inho NamEmail author
  • Jin Ho BangEmail author
Research Article
  • 68 Downloads

Abstract

Li4Ti5O12 (LTO) has attracted considerable attention in lithium-ion battery (LIB) applications because of its favorable characteristics as an anode material. Despite its promise, the widespread use of LTO is still limited primarily due to its intrinsically poor electric and ionic conductivities and high surface reactivity. To address these issues, we designed polygonal nanoarchitectures composed of various Li–Ti oxide crystal polymorphs by a facile synthesis route. Depending on the pH condition, this synthesis approach yields multi-polymorphed Li–Ti oxides where the interior is dominantly composed of a Li-rich phase and the exterior is a Li-deficient (or Li-free) phase. As one of these variations, a polygonal LTO-rutile TiO2 structure is formed. The rutile TiO2 on the surface of this LTO composite significantly improves the kinetics of Li+ insertion/extraction because the channel along the c-axis in TiO2 provides a Li+ highway due to the significantly low energy barrier for Li+ diffusion. Moreover, the presence of rutile TiO2, which is less reactive with a carbonate-based electrolyte, ensures long-term stability by suppressing the undesirable interfacial reaction on LTO.

Keywords

micro-polygon structure Li–Ti oxide multi-polymorphs Li4Ti5O12@rutile TiO2 anode lithium-ion batteries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by grants from the Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Science and ICT (Nos. NRF- 2016R1A1A1A05005038 and NRF-2018M3A7B8061494) and by the Ministry of Education (No. NRF-2018R1A6A1A03024231). This work was also supported by the Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-MA1601-03.

Supplementary material

12274_2019_2320_MOESM1_ESM.pdf (2.9 mb)
Polygonal multi-polymorphed Li4Ti5O12@rutile TiO2 as anodes in lithium-ion batteries

References

  1. [1]
    Sorrell, S. Reducing energy demand: A review of issues, challenges and approaches. Renew. Sustain. Energy Rev. 2015, 47, 74–82.CrossRefGoogle Scholar
  2. [2]
    Manthiram, A. An outlook on lithium ion battery technology. ACS Cent. Sci. 2017, 3, 1063–1069.CrossRefGoogle Scholar
  3. [3]
    Lee, L.; Kang, B.; Han, S.; Kim, H. E.; Lee, M. D.; Bang, J. H. A generalizable top-down nanostructuring method of bulk oxides: Sequential oxygen–nitrogen exchange reaction. Small 2018, 14, 1801124.CrossRefGoogle Scholar
  4. [4]
    Li, Z. H.; Feng, X. M.; Mi, L. W.; Zheng, J. Y.; Chen, X. Y.; Chen, W. H. Hierarchical porous onion-shaped LiMn2O4 as ultrahigh-rate cathode material for lithium ion batteries. Nano Res. 2018, 11, 4038–4048.CrossRefGoogle Scholar
  5. [5]
    Zhao, L. F.; Tang, T.; Chen, W. H.; Feng, X. M.; Mi, L. W. Carbon coated ultrasmall anatase TiO2 nanocrystal anchored on N,S-RGO as highperformance anode for sodium ion batteries. Green Energy Environ. 2018, 3, 277–285.CrossRefGoogle Scholar
  6. [6]
    Yuan, T.; Tan, Z. P.; Ma, C. R.; Yang, J. H.; Ma, Z. F.; Zheng, S. Y. Challenges of spinel Li4Ti5O12 for lithium-ion battery industrial applications. Adv. Energy Mater. 2017, 7, 1601625.CrossRefGoogle Scholar
  7. [7]
    Ariyoshi, K.; Yamato, R.; Ohzuku, T. Zero-strain insertion mechanism of Li[Li1/3Ti5/3]O4 for advanced lithium-ion (shuttlecock) batteries. Electrochim. Acta 2005, 51, 1125–1129.CrossRefGoogle Scholar
  8. [8]
    Ohzuku, T.; Ueda, A.; Yamamoto, N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 1995, 142, 1431–1435.CrossRefGoogle Scholar
  9. [9]
    Lu, X.; Gu, L.; Hu, Y. S.; Chiu, H. C.; Li, H.; Demopoulos, G. P.; Chen, L. Q. New insight into the atomic-scale bulk and surface structure evolution of Li4Ti5O12 anode. J. Am. Chem. Soc. 2015, 137, 1581–1586.CrossRefGoogle Scholar
  10. [10]
    Yi, T. F.; Jiang, L. J.; Shu, J.; Yue, C. B.; Zhu, R. S.; Qiao, H. B. Recent development and application of Li4Ti5O12 as anode material of lithium ion battery. J. Phys. Chem. Solids 2010, 71, 1236–1242.CrossRefGoogle Scholar
  11. [11]
    Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.CrossRefGoogle Scholar
  12. [12]
    Belharouak, I.; Sun, Y. K.; Lu, W.; Amine, K. On the safety of the Li4Ti5O12/LiMn2O4 lithium-ion battery system. J. Electrochem. Soc. 2007, 154, A1083–A1087.CrossRefGoogle Scholar
  13. [13]
    Schmidt, W.; Bottke, P.; Sternad, M.; Gollob, P.; Hennige, V.; Wilkening, M. Small change—great effect: Steep increase of Li ion dynamics in Li4Ti5O12 at the early stages of chemical Li insertion. Chem. Mater. 2015, 27, 1740–1750.CrossRefGoogle Scholar
  14. [14]
    Fell, C. R.; Sun, L. Y.; Hallac, P. B.; Metz, B.; Sisk, B. Investigation of the gas generation in lithium titanate anode based lithium ion batteries. J. Electrochem. Soc. 2015, 162, A1916–A1920.CrossRefGoogle Scholar
  15. [15]
    He, Y. B.; Li, B. H.; Liu, M.; Zhang, C.; Lv, W.; Yang, C.; Li, J.; Du, H. D.; Zhang, B.; Yang, Q. H. et al. Gassing in Li4Ti5O12-based batteries and its remedy. Sci. Rep. 2012, 2, 913.CrossRefGoogle Scholar
  16. [16]
    Han, C. P.; He, Y. B.; Liu, M.; Li, B. H.; Yang, Q. H.; Wong, C. P.; Kang, F. Y. A review of gassing behavior in Li4Ti5O12-based lithium ion batteries. J. Mater. Chem. A 2017, 5, 6368–6381.CrossRefGoogle Scholar
  17. [17]
    Lv, W. Q.; Gu, J. M.; Niu, Y. H.; Wen, K. C.; He, W. D. Review—gassing mechanism and suppressing solutions in Li4Ti5O12-based lithium-ion batteries. J. Electrochem. Soc. 2017, 164, A2213–A2224.CrossRefGoogle Scholar
  18. [18]
    Chiu, H. C.; Lu, X.; Zhou, J. G.; Gu, L.; Reid, J.; Gauvin, R.; Zaghib, K.; Demopoulos, G. P. Capacity fade mechanism of Li4Ti5O12 nanosheet anode. Adv. Energy Mater. 2017, 7, 1601825.CrossRefGoogle Scholar
  19. [19]
    Wang, Y. Q.; Gu, L.; Guo, Y. G.; Li, H.; He, X. Q.; Tsukimoto, S.; Ikuhara, Y.; Wan, L. J. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 2012, 134, 7874–7879.CrossRefGoogle Scholar
  20. [20]
    Jo, M. R.; Lee, G. H.; Kang, Y. M. Controlling solid-electrolyte-interphase layer by coating p-type semiconductor NiOx on Li4Ti5O12 for high-energydensity lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 27934–27939.CrossRefGoogle Scholar
  21. [21]
    Park, K. S.; Benayad, A.; Kang, D. J.; Doo, S. G. Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. J. Am. Chem. Soc. 2008, 130, 14930–14931.CrossRefGoogle Scholar
  22. [22]
    Fang, Z. K.; Zhu, Y. R.; Yi, T. F.; Xie, Y. Li4Ti5O12–LiAlO2 composite as high performance anode material for lithium-ion battery. ACS Sustainable Chem. Eng. 2016, 4, 1994–2003.CrossRefGoogle Scholar
  23. [23]
    Lee, E. J.; Nam, I.; Yi, J.; Bang, J. H. Nanoporous hexagonal TiO2 superstructure as a multifunctional material for energy conversion and storage. J. Mater. Chem. A 2015, 3, 3500–3510.CrossRefGoogle Scholar
  24. [24]
    Baek, J.; Park, S.; Song, C. K.; Kim, T. Y.; Nam, I.; Lee, J. M.; Han, J. W.; Yi, J. Radial alignment of c-channel nanorods in 3D porous TiO2 for eliciting enhanced Li storage performance. Chem. Commun. 2015, 51, 15019–15022.CrossRefGoogle Scholar
  25. [25]
    Sushko, M. L.; Rosso, K. M.; Liu, J. Mechanism of Li+/electron conductivity in rutile and anatase TiO2 nanoparticles. J. Phys. Chem. C 2010, 114, 20277–20283.CrossRefGoogle Scholar
  26. [26]
    Boudaren, C.; Bataille, T.; Auffrédic, J. P.; Louër, D. Synthesis, structure determination from powder diffraction data and thermal behaviour of titanium(IV) oxalate [Ti2O3(H2O)2](C2O4)·H2O. Solid State Sci. 2003, 5, 175–182.CrossRefGoogle Scholar
  27. [27]
    Wang, X. D.; Ouyang, J.; Su, J.; Zhou, W. A phase-field model for simulating various spherulite morphologies of semi-crystalline polymers. Chin. Phys. B 2013, 22, 106103.CrossRefGoogle Scholar
  28. [28]
    Xu, H. J.; Matkar, R.; Kyu, T. Phase-field modeling on morphological landscape of isotactic polystyrene single crystals. Phys. Rev. E 2005, 72, 011804.CrossRefGoogle Scholar
  29. [29]
    Gottstein, G.; Rollett, A. D.; Shvindlerman, L. S. On the validity of the von Neumann–Mullins relation. Scr. Mater. 2004, 51, 611–616.CrossRefGoogle Scholar
  30. [30]
    Gottstein, G.; Shvindlerman, L. S. Triple junction drag and grain growth in 2D polycrystals. Acta Mater. 2002, 50, 703–713.CrossRefGoogle Scholar
  31. [31]
    Buonsanti, R.; Grillo, V.; Carlino, E.; Giannini, C.; Gozzo, F.; Garcia-Hernandez, M.; Garcia, M. A.; Cingolani, R.; Cozzoli, P. D. Architectural control of seeded-grown magnetic–semicondutor iron oxide–TiO2 nanorod heterostructures: The role of seeds in topology selection. J. Am. Chem. Soc. 2010, 132, 2437–2464.CrossRefGoogle Scholar
  32. [32]
    Lee, C. H.; Li, P. pH-induced formation of various hierarchical structures from amphiphilic core–shell nanotubes. RSC Adv. 2012, 2, 1303–1306.CrossRefGoogle Scholar
  33. [33]
    Pileni, M. P. Nanocrystal self-assemblies: Fabrication and collective properties. J. Phys. Chem. B 2001, 105, 3358–3371.CrossRefGoogle Scholar
  34. [34]
    Han, J. P.; Zhang, B.; Wang, L. Y.; Qi, Y. X.; Zhu, H. L.; Lu, G. X.; Yin, L. W.; Li, H.; Lun, N.; Bai, Y. J. Combined modification of dual-phase Li4Ti5O12–TiO2 by lithium zirconates to optimize rate capabilities and cyclability. ACS Appl. Mater. Interfaces 2018, 10, 24910–24919.CrossRefGoogle Scholar
  35. [35]
    Huang, C.; Zhao, S. X.; Peng, H.; Lin, Y. H.; Nan, C. W.; Cao, G. Z. Hierarchical porous Li4Ti5O12–TiO2 composite anode materials with pseudocapacitive effect for high-rate and low-temperature applications. J. Mater. Chem. A 2018, 6, 14339–14351.CrossRefGoogle Scholar
  36. [36]
    Yi, T. F.; Fang, Z. K.; Xie, Y.; Zhu, Y. R.; Yang, S. Y. Rapid charge–discharge property of Li4Ti5O12–TiO2 nanosheet and nanotube composites as anode material for power lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 20205–20213.CrossRefGoogle Scholar
  37. [37]
    Zhang, W.; Liu, Z. Y.; Xiao, X. C.; Liu, D. W. Synthesis of nanoporous Li4Ti5O12-TiO2 composites for high-performance lithium-ion-battery anodes. ChemElectroChem 2016, 3, 1951–1959.CrossRefGoogle Scholar
  38. [38]
    Jiang, Y. M.; Wang, K. X.; Zhang, H. J.; Wang, J. F.; Chen, J. S. Hierarchical Li4Ti5O12/TiO2 composite tubes with regular structural imperfection for lithium ion storage. Sci. Rep. 2013, 3, 3490.CrossRefGoogle Scholar
  39. [39]
    Wu, F. X.; Li, X. H.; Wang, Z. X.; Guo, H. J. Petal-like Li4Ti5O12-TiO2 nanosheets as high-performance anode materials for Li-ion batteries. Nanoscale 2013, 5, 6936–6943.CrossRefGoogle Scholar
  40. [40]
    Wang, P.; Zhang, G.; Cheng, J.; You, Y.; Li, Y. K.; Ding, C.; Gu, J. J.; Zheng, X. S.; Zhang, C. F.; Cao, F. F. Facile synthesis of carbon-coated spinel Li4Ti5O12/rutile-TiO2 composites as an improved anode material in full lithium-ion batteries with LiFePO4@n-doped carbon cathode. ACS Appl. Mater. Interfaces 2017, 9, 6138–6143.CrossRefGoogle Scholar
  41. [41]
    Wang, F.; Luo, L. C.; Du, J.; Guo, L. G.; Li, B. H.; Ding, Y. Nitrogendoped carbon decorated Li4Ti5O12 composites as anode materials for high performance lithium-ion batteries. RSC Adv. 2015, 5, 46359–46365.CrossRefGoogle Scholar
  42. [42]
    Lin, C. F.; Fan, X. Y.; Xin, Y. L.; Cheng, F. Q.; Lai, M. O.; Zhou, H. H.; Lu, L. Monodispersed mesoporous Li4Ti5O12 submicrospheres as anode materials for lithium-ion batteries: Morphology and electrochemical performances. Nanoscale 2014, 6, 6651–6660.CrossRefGoogle Scholar
  43. [43]
    Zhu, Z. Q.; Cheng, F. Y.; Chen, J. Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites. J. Mater. Chem. A 2013, 1, 9484–9490.CrossRefGoogle Scholar
  44. [44]
    Ri, S. G.; Zhan, L.; Wang, Y.; Zhou, L. H.; Hu, J.; Liu, H. L. Li4Ti5O12/graphene nanostructure for lithium storage with high-rate performance. Electrochim. Acta 2013, 109, 389–394.CrossRefGoogle Scholar
  45. [45]
    Bae, S.; Nam, I.; Park, S.; Yoo, Y. G.; Yu, S.; Lee, J. M.; Han, J. W.; Yi, J. Interfacial adsorption and redox coupling of Li4Ti5O12 with nanographene for high-rate lithium storage. ACS Appl. Mater. Interfaces 2015, 7, 16565–16572.CrossRefGoogle Scholar
  46. [46]
    Yan, B.; Li, M. S.; Li, X. F.; Bai, Z. M.; Yang, J. W.; Xiong, D. B.; Li, D. J. Novel understanding of carbothermal reduction enhancing electronic and ionic conductivity of Li4Ti5O12 anode. J. Mater. Chem. A 2015, 3, 11773–11781.CrossRefGoogle Scholar
  47. [47]
    Zou, H. L.; Liang, X.; Feng, X. Y.; Xiang, H. F. Chromium-modified Li4Ti5O12 with a synergistic effect of bulk doping, surface coating, and size reducing. ACS Appl. Mater. Interfaces 2016, 8, 21407–21416.CrossRefGoogle Scholar
  48. [48]
    Bhatti, H. S.; Anjum, D. H.; Ullah, S.; Ahmed, B.; Habib, A.; Karim, A.; Hasanain, S. K. Electrochemical characteristics and Li+ ion intercalation kinetics of dual-phase Li4Ti5O12/Li2TiO3 composite in the voltage range 0–3 V. J. Phys. Chem. C 2016, 120, 9553–9561.CrossRefGoogle Scholar
  49. [49]
    Sundaramurthy, J.; Aravindan, V.; Kumar, P. S.; Madhavi, S.; Ramakrishna, S. Electrospun TiO2–δ nanofibers as insertion anode for Li-ion battery applications. J. Phys. Chem. C 2014, 118, 16776–16781.CrossRefGoogle Scholar
  50. [50]
    Bi, Z. H.; Paranthaman, M. P.; Menchhofer, P. A.; Dehoff, R. R.; Bridges, C. A.; Chi, M. F.; Guo, B. K.; Sun, X. G.; Dai, S. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. J. Power Sources 2013, 222, 461–466.CrossRefGoogle Scholar
  51. [51]
    Leng, M.; Chen, Y.; Xue, J. M. Synthesis of TiO2 nanosheets via an exfoliation route assisted by a surfactant. Nanoscale 2014, 6, 8531–8534.CrossRefGoogle Scholar
  52. [52]
    van der Ven, A.; Bhattacharya, J.; Belak, A. A. Understanding Li diffusion in Li-intercalation compounds. Acc. Chem. Res. 2013, 46, 1216–1225.CrossRefGoogle Scholar
  53. [53]
    Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211.CrossRefGoogle Scholar
  54. [54]
    Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, 61, 1527–1535.CrossRefGoogle Scholar
  55. [55]
    Zhu, Y. Q.; Cao, C. B.; Zhang, J. T.; Xu, X. Y. Two-dimensional ultrathin ZnCo2O4 nanosheets: General formation and lithium storage application. J. Mater. Chem. A 2015, 3, 9556–9564.CrossRefGoogle Scholar
  56. [56]
    Wang, L.; Nie, Z. Y.; Cao, C. B.; Zhu, Y. Q.; Khalid, S. Chrysanthemumlike TiO2 nanostructures with exceptional reversible capacity and high Coulombic efficiency for lithium storage. J. Mater. Chem. A 2015, 3, 6402–6407.CrossRefGoogle Scholar
  57. [57]
    Kim, H.; Kim, S. W.; Park, Y. U.; Gwon, H.; Seo, D. H.; Kim, Y.; Kang, K. SnO2/graphene composite with high lithium storage capability for lithium rechargeable batteries. Nano Res. 2010, 3, 813–821.CrossRefGoogle Scholar
  58. [58]
    Han, B.; Lee, E. J.; Choi, W. H.; Yoo, W. C.; Bang, J. H. Three-dimensionally ordered mesoporous carbons activated by hot ammonia treatment as high-performance anode materials in lithium-ion batteries. New J. Chem. 2015, 39, 6178–6185.CrossRefGoogle Scholar
  59. [59]
    Zhang, Y. Q.; Du, F.; Yan, X.; Jin, Y. M.; Zhu, K.; Wang, X.; Li, H. M.; Chen, G.; Wang, C. Z.; Wei, Y. J. Improvements in the electrochemical kinetic properties and rate capability of anatase titanium dioxide nanoparticles by nitrogen doping. ACS Appl. Mater. Interfaces 2014, 6, 4458–4465.CrossRefGoogle Scholar
  60. [60]
    Tang, Y. X.; Zhang, Y. Y.; Rui, X. H.; Qi, D. P.; Luo, Y. F.; Leow, W. R.; Chen, S.; Guo, J.; Wei, J. Q.; Li, W. L. et al. Conductive inks based on a lithium titanate nanotube gel for high-rate lithium-ion batteries with customized configuration. Adv. Mater. 2016, 28, 1567–1576.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Bionano TechnologyHanyang UniversityAnsan, Gyeonggi-doRepublic of Korea
  2. 2.School of Chemical Engineering & Materials ScienceChung-Ang UniversitySeoulRepublic of Korea
  3. 3.Department of Chemical and Molecular EngineeringHanyang UniversityAnsan, Gyeonggi-doRepublic of Korea

Personalised recommendations