Advertisement

Nano Research

, Volume 12, Issue 4, pp 889–896 | Cite as

Regulation of the cellular uptake of nanoparticles by the orientation of helical polypeptides

  • Chong Zhang
  • Jianhua Lu
  • Falin Tian
  • Lindong Li
  • Yingqin Hou
  • Yaoyi Wang
  • Lingdong SunEmail author
  • Xinghua ShiEmail author
  • Hua LuEmail author
Research Article
  • 63 Downloads

Abstract

Controlling the cellular interaction and internalization of polymer-modified nanoparticles (NPs) is of central importance to the development of promising nanomedicines. Here, we describe the use of synthetic polypeptides for NP surface coating and regulation of their cellular uptake behaviors by simply switching the conformation and anchoring orientation. Our results show that gold NPs (AuNPs) coated with a helical poly(γ-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)esteryl L-glutamate) (L-P(EG3Glu)50) from the C-terminus ((L-C)-AuNPs) exhibit greater zeta potential and more cellular uptake (2.0–5.5 fold higher) than those coated with the same polypeptide but anchored from the N-terminus ((L-N)-AuNPs), or from both the C- and N-terminus at a 1/1 molar ratio ((L-C/L-N)-AuNPs). A similar orientation-regulated cellular internalization pattern is observed in D-P(EG3Glu)50 but not the unstructured DL-P(EG3Glu)50-modified AuNPs, suggesting an important and universal role of the helix-derived macrodipole in cellular uptake. Moreover, this orientation-governed internalization is successfully reproduced in P(EG3Glu)50-coated gold nanorods (AuNRs), and applied to the design of doxorubicin-loaded polypeptide micelles. Simulation study offers time-resolved insights regarding the NP–membrane interactions and membrane remodeling. Thus, our study provides a delicate way of regulating the surface chemistry of NPs and the subsequent NP–cell interactions. Moreover, the results highlight the uniqueness of polypeptides in NP surface engineering, and urge a more careful consideration on the polymer orientation effect.

Keywords

helix orientation polypeptides cellular uptake gold nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Financial supports from the National Key Research and Development Program of China (No. 2016YFA0201400) and the National Natural Science Foundation of China (No. 21722401) are gratefully acknowledged.

Supplementary material

12274_2019_2319_MOESM1_ESM.pdf (3.3 mb)
Regulation of the cellular uptake of nanoparticles by the orientation of helical polypeptides

References

  1. [1]
    Saha, K.; Agasti, S. S.; Kim, C.; Li, X. N.; Rotello, V. M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 2012, 112, 2739–2779.CrossRefGoogle Scholar
  2. [2]
    Chinen, A. B.; Guan, C. M.; Ferrer, J. R.; Barnaby, S. N.; Merkel, T. J.; Mirkin, C. A. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 2015, 115, 10530–10574.CrossRefGoogle Scholar
  3. [3]
    Kim, D.; Kim, J.; Park, Y. I.; Lee, N.; Hyeon, T. Recent development of inorganic nanoparticles for biomedical imaging. ACS Cent. Sci. 2018, 4, 324–336.CrossRefGoogle Scholar
  4. [4]
    Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015, 115, 10725–10815.CrossRefGoogle Scholar
  5. [5]
    Lane, L. A.; Qian, X. M.; Nie, S. M. SERS nanoparticles in medicine: From label-free detection to spectroscopic tagging. Chem. Rev. 2015, 115, 10489–10529.CrossRefGoogle Scholar
  6. [6]
    Björnmalm, M.; Thurecht, K. J.; Michael, M.; Scott, A. M.; Caruso, F. Bridging bio-nano science and cancer nanomedicine. ACS Nano 2017, 11, 9594–9613.CrossRefGoogle Scholar
  7. [7]
    Pelaz, B.; Alexiou, C.; Alvarez-Puebla, R. A.; Alves, F.; Andrews, A. M.; Ashraf, S.; Balogh, L. P.; Ballerini, L.; Bestetti, A.; Brendel, C. et al. Diverse applications of nanomedicine. ACS Nano 2017, 11, 2313–2381.Google Scholar
  8. [8]
    Yang, X.; Yang, M. X.; Pang, B.; Vara, M.; Xia, Y. N. Gold nanomaterials at work in biomedicine. Chem. Rev. 2015, 115, 10410–10488.CrossRefGoogle Scholar
  9. [9]
    Li, S. X.; Feng, X. R.; Wang, J. X.; He, L.; Wang, C. X.; Ding, J. X.; Chen, X. S. Polymer nanoparticles as adjuvants in cancer immunotherapy. Nano Res. 2018, 11, 5769–5786.CrossRefGoogle Scholar
  10. [10]
    Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M. A.; Alkawareek, M. Y.; Dreaden, E. C.; Brown, D.; Alkilany, A. M.; Farokhzad, O. C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017, 46, 4218–4244.CrossRefGoogle Scholar
  11. [11]
    Zhao, F.; Zhao, Y.; Liu, Y.; Chang, X. L.; Chen, C. Y.; Zhao, Y. L. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 2011, 7, 1322–1337.CrossRefGoogle Scholar
  12. [12]
    Verma, A.; Stellacci, F. Effect of surface properties on nanoparticle–cell interactions. Small 2010, 6, 12–21.CrossRefGoogle Scholar
  13. [13]
    Jiang, W.; Kim, B. Y. S.; Rutka, J. T.; Chan, W. C. W. Nanoparticlemediated cellular response is size-dependent. Nat. Nanotechnol. 2008, 3, 145–150.CrossRefGoogle Scholar
  14. [14]
    Tang, L.; Yang, X. J.; Yin, Q.; Cai, K. M.; Wang, H.; Chaudhury, I.; Yao, C.; Zhou, Q.; Kwon, M.; Hartman, J. A. et al. Investigating the optimal size of anticancer nanomedicine. Proc. Natl. Acad. Sci. USA 2014, 111, 15344–15349.CrossRefGoogle Scholar
  15. [15]
    Mosquera, J.; García, I.; Liz-Marzán, L. M. Cellular uptake of nanoparticles versus small molecules: A matter of size. Acc. Chem. Res. 2018, 51, 2305–2313.CrossRefGoogle Scholar
  16. [16]
    Chithrani, B. D.; Chan, W. C. W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007, 7, 1542–1550.CrossRefGoogle Scholar
  17. [17]
    Li, Y.; Kröger, M.; Liu, W. K. Shape effect in cellular uptake of PEGylated nanoparticles: Comparison between sphere, rod, cube and disk. Nanoscale 2015, 7, 16631–16646.CrossRefGoogle Scholar
  18. [18]
    Verma, A.; Uzun, O.; Hu, Y. H.; Hu, Y.; Han, H. S.; Watson, N.; Chen, S.; Irvine, D. J.; Stellacci, F. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater. 2008, 7, 588–595.CrossRefGoogle Scholar
  19. [19]
    Xue, J. X.; Guan, Z.; Lin, J. P.; Cai, C. H.; Zhang, W. J.; Jiang, X. Q. Cellular internalization of rod-like nanoparticles with various surface patterns: Novel entry pathway and controllable uptake capacity. Small 2017, 13, 1604214.CrossRefGoogle Scholar
  20. [20]
    Mochida, Y.; Cabral, H.; Miura, Y.; Albertini, F.; Fukushima, S.; Osada, K.; Nishiyama, N.; Kataoka, K. Bundled assembly of helical nanostructures in polymeric micelles loaded with platinum drugs enhancing therapeutic efficiency against pancreatic tumor. ACS Nano 2014, 8, 6724–6738.CrossRefGoogle Scholar
  21. [21]
    Hühn, D.; Kantner, K.; Geidel, C.; Brandholt, S.; De Cock, I.; Soenen, S. J. H.; Rivera_Gil, P.; Montenegro, J. M.; Braeckmans, K.; Müllen, K. et al. Polymer-coated nanoparticles interacting with proteins and cells: Focusing on the sign of the net charge. ACS Nano 2013, 7, 3253–3263.Google Scholar
  22. [22]
    Hauck, T. S.; Ghazani, A. A.; Chan, W. C. W. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 2008, 4, 153–159.CrossRefGoogle Scholar
  23. [23]
    Wang, X. Y.; Wang, M. Z.; Lei, R.; Zhu, S. F.; Zhao, Y. L.; Chen, C. Y. Chiral surface of nanoparticles determines the orientation of adsorbed transferrin and its interaction with receptors. ACS Nano 2017, 11, 4606–4616.CrossRefGoogle Scholar
  24. [24]
    Sun, J. S.; Zhang, L.; Wang, J. L.; Feng, Q.; Liu, D. B.; Yin, Q. F.; Xu, D. Y.; Wei, Y. J.; Ding, B. Q.; Shi, X. H. et al. Tunable rigidity of (polymeric core)–(lipid shell) nanoparticles for regulated cellular uptake. Adv. Mater. 2015, 27, 1402–1407.Google Scholar
  25. [25]
    Borase, T.; Heise, A. Hybrid nanomaterials by surface grafting of synthetic polypeptides using N-carboxyanhydride (NCA) polymerization. Adv. Mater. 2016, 28, 5725–5731.CrossRefGoogle Scholar
  26. [26]
    Song, Z. Y.; Han, Z. Y.; Lv, S. X.; Chen, C. Y.; Chen, L.; Yin, L. C.; Cheng, J. J. Synthetic polypeptides: From polymer design to supramolecular assembly and biomedical application. Chem. Soc. Rev. 2017, 46, 6570–6599.CrossRefGoogle Scholar
  27. [27]
    Shen, Y.; Fu, X. H.; Fu, W. X.; Li, Z. B. Biodegradable stimuli-responsive polypeptide materials prepared by ring opening polymerization. Chem. Soc. Rev. 2015, 44, 612–622.CrossRefGoogle Scholar
  28. [28]
    Deming, T. J. Synthesis of side-chain modified polypeptides. Chem. Rev. 2016, 116, 786–808.CrossRefGoogle Scholar
  29. [29]
    Guyon, L.; Lepeltier, E.; Passirani, C. Self-assembly of peptide-based nanostructures: Synthesis and biological activity. Nano Res. 2018, 11, 2315–2335.CrossRefGoogle Scholar
  30. [30]
    Lindgren, M.; Hällbrink, M.; Prochiantz, A.; Langel, Ü. Cell-penetrating peptides. Trends Pharmacol. Sci. 2000, 21, 99–103.CrossRefGoogle Scholar
  31. [31]
    Petsko, G. A.; Ringe, D. Protein Structure and Function; New Science Press: London, 2004.Google Scholar
  32. [32]
    Galoppini, E.; Fox, M. A. Effect of the electric field generated by the helix dipole on photoinduced intramolecular electron transfer in dichromophoric a-helical peptides. J. Am. Chem. Soc. 1996, 118, 2299–2300.CrossRefGoogle Scholar
  33. [33]
    Song, Z. Y.; Fu, H. L.; Wang, R. B.; Pacheco, L. A.; Wang, X.; Lin, Y.; Cheng, J. J. Secondary structures in synthetic polypeptides from Ncarboxyanhydrides: Design, modulation, association, and material applications. Chem. Soc. Rev. 2018, 47, 7401–7425.CrossRefGoogle Scholar
  34. [34]
    Niwa, M.; Kuwagaki, Y.; Yamaguchi, S.; Higashi, N. Effect of the helix macrodipole on surface-initiated N-carboxyanhydride polymerization on gold. Angew. Chem. 2003, 115, 1883–1885.CrossRefGoogle Scholar
  35. [35]
    Worley, C. G.; Linton, R. W.; Samulski, E. T. Electric-field-enhanced selfassembly of.alpha.-helical polypeptides. Langmuir 1995, 11, 3805–3810.CrossRefGoogle Scholar
  36. [36]
    Niwa, M.; Morikawa, M. A.; Higashi, N. Controllable orientation of helical poly(L-glutamic acid) rods through macrodipole interaction on gold surfaces and vectorial electron transfer. Angew. Chem., Int. Ed. 2000, 39, 960–963.CrossRefGoogle Scholar
  37. [37]
    Jaworek, T.; Neher, D.; Wegner, G.; Wieringa, R. H.; Schouten, A. J. Electromechanical properties of an ultrathin layer of directionally aligned helical polypeptides. Science 1998, 279, 57–60.CrossRefGoogle Scholar
  38. [38]
    Chang, Y. C.; Frank, C. W.; Forstmann, G. G.; Johannsmann, D. Quadrupolar and polar anisotropy in end-grafted a-helical poly(?-benzyl-L-glutamate) on solid substrates. J. Chem. Phys. 1999, 111, 6136–6143.CrossRefGoogle Scholar
  39. [39]
    Whitesell, J. K.; Chang, H. K. Surface oriented polymers for nonlinear optics. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 1994, 240, 251–258.CrossRefGoogle Scholar
  40. [40]
    Zhang, C.; Yuan, J. S.; Lu, J. H.; Hou, Y. Q.; Xiong, W.; Lu, H. From neutral to zwitterionic poly(a-amino acid) nonfouling surfaces: Effects of helical conformation and anchoring orientation. Biomaterials 2018, 178, 728–737.CrossRefGoogle Scholar
  41. [41]
    Chen, C. Y.; Wang, Z. H.; Li, Z. B. Thermoresponsive polypeptides from PEGylated poly-L-glutamates. Biomacromolecules 2011, 12, 2859–2863.CrossRefGoogle Scholar
  42. [42]
    Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22.CrossRefGoogle Scholar
  43. [43]
    Sau, T. K.; Murphy, C. J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 2004, 20, 6414–6420.CrossRefGoogle Scholar
  44. [44]
    Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L. F.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857–13870.CrossRefGoogle Scholar
  45. [45]
    Groot, R. D.; Warren, P. B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997, 107, 4423–4435.CrossRefGoogle Scholar
  46. [46]
    Yang, K.; Ma, Y. Q. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat. Nanotechnol. 2010, 5, 579–583.CrossRefGoogle Scholar
  47. [47]
    Bonduelle, C. Secondary structures of synthetic polypeptide polymers. Polym. Chem. 2018, 9, 1517–1529.CrossRefGoogle Scholar
  48. [48]
    Li, G. Z.; Cheng, G.; Xue, H.; Chen, S. F.; Zhang, F. B.; Jiang, S. Y. Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials 2008, 29, 4592–4597.CrossRefGoogle Scholar
  49. [49]
    Banerjee, I.; Pangule, R. C.; Kane, R. S. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 2011, 23, 690–718.CrossRefGoogle Scholar
  50. [50]
    Matsuura, K.; Ohno, K.; Kagaya, S.; Kitano, H. Carboxybetaine polymerprotected gold nanoparticles: High dispersion stability and resistance against non-specific adsorption of proteins. Macromol. Chem. Phys. 2007, 208, 862–873.CrossRefGoogle Scholar
  51. [51]
    Yu, X. F.; Liu, Z. H.; Janzen, J.; Chafeeva, I.; Horte, S.; Chen, W.; Kainthan, R. K.; Kizhakkedathu, J. N.; Brooks, D. E. Polyvalent choline phosphate as a universal biomembrane adhesive. Nat. Mater. 2012, 11, 468–476.CrossRefGoogle Scholar
  52. [52]
    Yameen, B.; Choi, W. I.; Vilos, C.; Swami, A.; Shi, J.; Farokhzad, O. C. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release 2014, 190, 485–499.CrossRefGoogle Scholar
  53. [53]
    Tian, F. L.; Zhang, X. R.; Dong, W. How hydrophobic nanoparticles aggregate in the interior of membranes: A computer simulation. Phys. Rev. E 2014, 90, 052701.CrossRefGoogle Scholar
  54. [54]
    Yue, T. T.; Zhang, X. R. Molecular understanding of receptor-mediated membrane responses to ligand-coated nanoparticles. Soft Matter 2011, 7, 9104–9112.CrossRefGoogle Scholar
  55. [55]
    Hou, Y. Q.; Zhou, Y.; Wang, H.; Sun, J. L.; Wang, R. J.; Sheng, K.; Yuan, J. S.; Hu, Y. L.; Chao, Y.; Liu, Z.; Lu, H. Therapeutic protein PEPylation: The helix of nonfouling synthetic polypeptides minimizes antidrug antibody generation. ACS C ent. Sci., in press, DOI: 10.1021/acscentsci.8b00548.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of EducationPeking UniversityBeijingChina
  3. 3.CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
  4. 4.State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic ChemistryPeking UniversityBeijingChina

Personalised recommendations