Fabrication of bilayer Pd-Pt nanocages with sub-nanometer thin shells for enhanced hydrogen evolution reaction

  • Yihe Wang
  • Lei Zhang
  • Congling Hu
  • Shengnan Yu
  • Piaoping Yang
  • Dongfang Cheng
  • Zhi-Jian Zhao
  • Jinlong GongEmail author
Research Article


The hydrogen evolution reaction (HER), which generates molecular hydrogen through the electrochemical reduction of water, is an important clean-energy technology. Platinum (Pt) is an ideal material for HER electrocatalysts in terms of low overpotential and fast kinetics. An effective method to improve the atom utilization efficiency of Pt is to fabricate Pt-based core-shell or nanocage structures with ultra-thin walls. This paper describes the construction of bilayer palladium (Pd)-Pt alloy nanocages catalyst with enhanced HER catalytic activity. The nanocages were fabricated by etching away the Pd templates of multishelled nanocubes composed of alternate shells of Pd and Pt with well-defined (100) facets. The bilayer Pd-Pt nanocages with sub-nanometer shells have a high dispersion of the active atoms on the outside and inside surfaces of outer layer and inner layer, respectively. Moreover, the Pd-Pt alloy lowers the overpotential for HER and speeds up the reaction rate of HER due to the synergies between Pd and Pt. The rational design of bilayer nanocages provided a novel route for boosting the atom utilization efficiency of Pt catalysts.


Pd-Pt alloy multishelled nanocubes nanocages hydrogen evolution reaction electrocatalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge the National Key R&D Program of China (No. 2016YFB0600901), the National Natural Science Foundation of China (Nos. U1463205, 21525626, and 21606169) for financial support, and the Program of Introducing Talents of Discipline to Universities (B06006) for financial support.

Supplementary material

12274_2019_2312_MOESM1_ESM.pdf (2.6 mb)
Fabrication of bilayer Pd-Pt nanocages with sub-nanometer thin shells for enhanced hydrogen evolution reaction


  1. [1]
    Litster, S.; McLean, G. PEM fuel cell electrodes. J. Power Sources 2004, 130, 61–76.CrossRefGoogle Scholar
  2. [2]
    Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352.CrossRefGoogle Scholar
  3. [3]
    Zhu, H.; Luo, M. C.; Zhang, S.; Wei, L. L.; Wang, F. H.; Wang, Z. M.; Wei, Y. S.; Han, K. F. Combined method to prepare core-shell structured catalyst for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2013, 38, 3323–3329.CrossRefGoogle Scholar
  4. [4]
    Markovic, N. M.; Grgur, B. N.; Ross, P. N. Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. J. Phys. Chem. B 1997, 101, 5405–5413.CrossRefGoogle Scholar
  5. [5]
    Markovica, N. M.; Sarraf, S. T.; Gasteiger, H. A.; Ross, P. N., Jr. Hydrogen electrochemistry on platinum low-index single-crystal surfaces in alkaline solution. J. Chem. Soc., Faraday Trans. 1996, 92, 3719–3725.CrossRefGoogle Scholar
  6. [6]
    Zhang, H.; Jin, M. S.; Xia, Y. N. Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 2012, 41, 8035–8049.CrossRefGoogle Scholar
  7. [7]
    Peng, Z. M.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143–164.CrossRefGoogle Scholar
  8. [8]
    Guo, S. J.; Wang, E. K. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors. Nano Today 2011, 6, 240–264.CrossRefGoogle Scholar
  9. [9]
    Wang, X.; Figueroa-Cosme, L.; Yang, X.; Luo, M.; Liu, J. Y.; Xie, Z. X.; Xia, Y. N. Pt-based icosahedral nanocages: Using a combination of {111} facets, twin defects, and ultrathin walls to greatly enhance their activity toward oxygen reduction. Nano Lett. 2016, 16, 1467–1471.CrossRefGoogle Scholar
  10. [10]
    Yu, S. N.; Zhang, L.; Dong, H.; Gong, J. L. Facile synthesis of Pd@Pt octahedra supported on carbon for electrocatalytic applications. AIChE J. 2017, 63, 2528–2534.CrossRefGoogle Scholar
  11. [11]
    Yu, S. N.; Zhang, L.; Zhao, Z. J.; Gong, J. L. Structural evolution of concave trimetallic nanocubes with tunable ultra-thin shells for oxygen reduction reaction. Nanoscale 2016, 8, 16640–16649.CrossRefGoogle Scholar
  12. [12]
    Fan, H.; Yang, L. J.; Wang, Y.; Zhang, X. L.; Wu, Q. S.; Che, R. C.; Liu, M.; Wu, Q.; Wang, X. Z.; Hu, Z. Boosting oxygen reduction activity of spinel CoFe2O4 by strong interaction with hierarchical nitrogen-doped carbon nanocages. Sci. Bull. 2017, 62, 1365–1372.CrossRefGoogle Scholar
  13. [13]
    Hu, C. L.; Zhang, L.; Zhao, Z. J.; Li, A.; Chang, X. X.; Gong, J. L. Synergism of geometric construction and electronic regulation: 3D Se-(NiCo)Sx/(OH)x nanosheets for highly efficient overall water splitting. Adv. Mater. 2018, 30, 1705538.CrossRefGoogle Scholar
  14. [14]
    Zhu, W. J.; Zhang, L.; Yang, P. P.; Chang, X. X.; Dong, H.; Li, A.; Hu, C. L.; Huang, Z. Q.; Zhao, Z. J.; Gong, J. L. Morphological and compositional design of Pd–Cu bimetallic nanocatalysts with controllable product selectivity toward CO2 electroreduction. Small 2018, 14, 1703314.CrossRefGoogle Scholar
  15. [15]
    Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adzic, R. R. Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 2004, 108, 10955–10964.CrossRefGoogle Scholar
  16. [16]
    Zhang, J. L.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem., Int. Ed. 2005, 44, 2132–2135.CrossRefGoogle Scholar
  17. [17]
    Sasaki, K.; Naohara, H.; Choi, Y.; Cai, Y.; Chen, W. F.; Liu, P.; Adzic, R. R. Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat. Commun. 2012, 3, 1115.CrossRefGoogle Scholar
  18. [18]
    Xie, S. F.; Choi, S. I.; Lu, N.; Roling, L. T.; Herron, J. A.; Zhang, L.; Park, J.; Wang, J. G.; Kim, M. J.; Xie, Z. X.; Mavrikakis, M.; Xia, Y. N. Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Nano Lett. 2014, 14, 3570–3576.CrossRefGoogle Scholar
  19. [19]
    Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416.CrossRefGoogle Scholar
  20. [20]
    Zhang, J. J.; Zhang, P.; Wang, T.; Gong, J. L. Monoclinic WO3 nanomultilayers with preferentially exposed (002) facets for photoelectrochemical water splitting. Nano Energy 2015, 11, 189–195.CrossRefGoogle Scholar
  21. [21]
    Dang, K.; Chang, X. X.; Wang, T.; Gong, J. L. Enhancement of photoelectrochemical oxidation by an amorphous nickel boride catalyst on porous BiVO4. Nanoscale 2017, 9, 16133–16137.CrossRefGoogle Scholar
  22. [22]
    Dang, K.; Wang, T.; Li, C. C.; Zhang, J. J.; Liu, S. S.; Gong, J. L. Improved oxygen evolution kinetics and surface states passivation of Ni-Bi co-catalyst for a hematite photoanode. Engineering 2017, 3, 285–289.CrossRefGoogle Scholar
  23. [23]
    Zhang, H.; Jin, M. S.; Wang, J. G.; Li, W. Y.; Camargo, P. H. C.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Xia, Y. N. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-Induced Galvanic Replacement Reaction. J. Am. Chem. Soc. 2011, 133, 6078–6089.CrossRefGoogle Scholar
  24. [24]
    Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196.CrossRefGoogle Scholar
  25. [25]
    Zhang, P.; Wang, T.; Gong, J. L. Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 2015, 27, 5328–5342.CrossRefGoogle Scholar
  26. [26]
    Yu, L.; Hu, H.; Wu, H. B.; Lou, X. W. Complex hollow nanostructures: Synthesis and energy-related applications. Adv. Mater. 2017, 29, 1604563.CrossRefGoogle Scholar
  27. [27]
    Li, A.; Zhang, P.; Chang, X. X.; Cai, W. T.; Wang, T.; Gong, J. L. Gold nanorod@TiO2 yolk-shell nanostructures for visible-light-driven photocatalytic oxidation of benzyl alcohol. Small 2015, 11, 1892–1899.CrossRefGoogle Scholar
  28. [28]
    Li, C. C.; Wang, T.; Luo, Z. B.; Liu, S. S.; Gong, J. L. Enhanced charge separation through ALD-modified Fe2O3/Fe2TiO5 nanorod heterojunction for photoelectrochemical water oxidation. Small 2016, 12, 3415–3422.CrossRefGoogle Scholar
  29. [29]
    Zhang, P.; Wang, T.; Zhang, J. J.; Chang, X. X.; Gong, J. L. Bridging the transport pathway of charge carriers in a Ta3N5 nanotube array photoanode for solar water splitting. Nanoscale 2015, 7, 13153–13158.CrossRefGoogle Scholar
  30. [30]
    Xu, S. H.; Li, Z. S.; Lei, F. L.; Wang, Y. L.; Xie, Y. X.; Lin, S. Facile synthesis of hydrangea-like core-shell Pd@Pt/graphene composite as an efficient electrocatalyst for methanol oxidation. Appl. Surf. Sci. 2017, 426, 351–359.CrossRefGoogle Scholar
  31. [31]
    Teran, F. E.; Santos, D. M.; Ribeiro, J.; Kokoh, K. B. Activity of PtSnRh/C nanoparticles for the electrooxidation of C1 and C2 alcohols. Thin Solid Films 2012, 520, 5846–5850.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yihe Wang
    • 1
  • Lei Zhang
    • 1
  • Congling Hu
    • 1
  • Shengnan Yu
    • 1
  • Piaoping Yang
    • 1
  • Dongfang Cheng
    • 1
  • Zhi-Jian Zhao
    • 1
  • Jinlong Gong
    • 1
    Email author
  1. 1.Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and TechnologyTianjin University; Collaborative Innovation Center of Chemical Science and EngineeringTianjinChina

Personalised recommendations