Although many previous studies have shown that the shape-control of nanocrystal (NCs) is an efficient strategy to improve the catalytic performance, these syntheses were conducted under very different conditions, which are not suitable for the shape-dependent properties studies as well as catalysis optimization. Herein, we demonstrate an effective method for the selective synthesis of well-defined PtPb NCs in a highly controllable manner. Four distinct PtPb NCs, namely PtPb peanut nanocrystals, PtPb hexagonal nanoplates, PtPb octahedra nanocrystals (ONCs) and PtPb nanoparticles have been selectively prepared in the presence of different phenols. Significantly, we found that the created PtPb NCs/C shows the shape-dependent activity with the optimized PtPb ONCs/C being the most active for the ethanol reforming to H2, 22.4 times higher than the commercial Pt/C. The high performance of PtPb ONCs/C has been also successfully expanded into other polyhydric alcohols reformings. X-ray photoelectron spectroscopy (XPS) reveals that the high Pt(0)/Pt(II) ratio in PtPb NCs/C enhances the alcohols reforming. The density functional theory (DFT) studies show the PtPb ONCs possess the highest surface averaged electronic occupation for unit Pt-atom, matching well with XPS results. The PtPb ONCs/C also displays excellent durability with limited activity decay and negligible structure/composition changes after ten cycles. This work demonstrates an important advance in the high-level control of metallic nanostructures to tune the catalytic activities.
This work was financially supported by the National Key Technology R&D Program of China (Nos. 2016YFA0204100 and 2017YFA0208200), the National Natural Science Foundation of China (No. 21571135), Young Thousand Talented Program, the Natural Science Foundation of Jiangsu Higher Education Institutions (No. 17KJB150032), the project of scientific and technologic infrastructure of Suzhou (No. SZS201708), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the start-up supports from Soochow University.
Enhancing catalytic H2 generation by surface electronic tuning of systematically controlled Pt-Pb nanocrystals
References
[1]
Stolten, D. Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications; Wiley-VCH: Weinheim, Germany, 2010.Google Scholar
[2]
Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature2001, 414, 345–352.CrossRefGoogle Scholar
[3]
Schlapbach, L.; Zuttel, A. Hydrogen-storage materials for mobile applications. Nature2001, 414, 353–358.CrossRefGoogle Scholar
[4]
Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Peng, Z. F.; Wang, Y. In situ cobalt-cobalt oxide/n-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc.2015, 137, 2688–2694.CrossRefGoogle Scholar
[5]
Wang, B.; Zeng, C. P.; Chu, K.; Wu, D.; Yip, H. Y.; Ye, L. Q.; Wong, P. K. Enhanced biological hydrogen production from Escherichia coli with surface precipitated cadmium sulfide nanoparticles. Adv. Energy Mater.2017, 7, 1700611.CrossRefGoogle Scholar
[6]
Ochoa, A.; Aramburu, B.; Valle, B.; Resasco, D. E.; Bilbao, J.; Gayubo, A. G.; Castaño, P. Role of oxygenates and effect of operating conditions in the deactivation of a Ni supported catalyst during the steam reforming of bio-oil. Green Chem.2017, 19, 4315–4333.CrossRefGoogle Scholar
[7]
Laprune, D.; Farrusseng, D.; Schuurman, Y.; Meunier, F. C.; Pieterse, J. A. Z.; Steele, A. M.; Thorpe, S. Effects of H2S and phenanthrene on the activity of Ni and Rh-based catalysts for the reforming of a simulated biomass-derived producer gas. Appl. Catal. B: Environ.2018, 221, 206–214.CrossRefGoogle Scholar
[8]
David, W. I. F.; Makepeace, J. W.; Callear, S. K.; Hunter, H. M. A.; Taylor, J. D.; Wood, T. J.; Jones, M. O. Hydrogen production from ammonia using sodium amide. J. Am. Chem. Soc.2014, 136, 13082–13085.CrossRefGoogle Scholar
[9]
Yu, K. M. K.; Tong, W. Y.; West, A.; Cheung, K.; Li, T.; Smith, G.; Guo, Y. L.; Tsang, S. C. E. Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature. Nat. Commun.2012, 3, 1230.CrossRefGoogle Scholar
[10]
Zhang, S.; Metin, Ö.; Su, D.; Sun, S. H. Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid. Angew. Chem., Int. Ed.2013, 52, 3681–3684.CrossRefGoogle Scholar
[11]
Palo, D. R.; Dagle, R. A.; Holladay, J. D. Methanol steam reforming for hydrogen production. Chem. Rev.2007, 107, 3992–4021.CrossRefGoogle Scholar
[12]
Cortright, R. D.; Davda, R. R.; Dumesic, J. A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature2002, 418, 964–967.CrossRefGoogle Scholar
[13]
Johnson, T. C.; Morris, D. J.; Wills, M. Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem. Soc. Rev.2010, 39, 81–88.CrossRefGoogle Scholar
[14]
Lin, L. L.; Zhou, W.; Gao, R.; Yao, S. Y.; Zhang, X.; Xu, W. Q.; Zheng, S. J.; Jiang, Z.; Yu, Q. L.; Li, Y. W. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature2017, 544, 80–83.CrossRefGoogle Scholar
[15]
Zhai, Y. P.; Pierre, D.; Si, R.; Deng, D. L.; Ferrin, P.; Nilekar, A. U.; Peng, G. W.; Herron, J. A.; Bell, D. C.; Saltsburg, H. et al. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions. Science2010, 329, 1633–1636.CrossRefGoogle Scholar
[16]
Shabaker, J. W.; Davda, R. R.; Huber, G. W.; Cortright, R. D.; Dumesic, J. A. Aqueous-phase reforming of methanol and ethylene glycol over alumina-supported platinum Catalysts. J. Catal.2003, 215, 344–352.CrossRefGoogle Scholar
[17]
Khan, M. U.; Wang, L. B.; Liu, Z.; Gao, Z. H.; Wang, S. P.; Li, H. L.; Zhang, W. B.; Wang, M. L.; Wang, Z. F.; Ma, C. et al. Pt3Co octapods as superior catalysts of CO2 hydrogenation. Angew. Chem., Int. Ed.2016, 55, 9548–9552.CrossRefGoogle Scholar
[18]
Zhang, H. J.; Watanabe, T.; Okumura, M.; Haruta, M.; Toshima, N. Catalytically highly active top gold atom on palladium nanocluster. Nat. Mater.2012, 11, 49–52.CrossRefGoogle Scholar
[19]
Wang, L. B.; Zhao, S. T.; Liu, C. X.; Li, C.; Li, X.; Li, H. L.; Wang, Y. C.; Ma, C.; LI, Z. Y.; Zeng, J. Aerobic oxidation of cyclohexane on catalysts based on twinned and single-crystal Au75Pd25 bimetallic nanocrystals. Nano Lett.2015, 15, 2875–2880.CrossRefGoogle Scholar
[20]
Wu, J. B.; Qi, L.; You, H. J.; Gross, A.; Li, J.; Yang, H. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J. Am. Chem. Soc.2012, 134, 11880–11883.CrossRefGoogle Scholar
[21]
Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D. G.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science2014, 343, 1339–1343.CrossRefGoogle Scholar
[22]
Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater.2013, 12, 765–771.CrossRefGoogle Scholar
[23]
Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. D. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater.2007, 6, 692–697.CrossRefGoogle Scholar
[24]
Zhang, S.; Zhang, X.; Jiang, G. M.; Zhu, H. Y.; Guo, S. J.; Su, D.; Lu, G.; Sun, S. H. Tuning nanoparticle structure and surface strain for catalysis optimization. J. Am. Chem. Soc.2014, 136, 7734–7739.CrossRefGoogle Scholar
[25]
Xu, D.; Liu, Z. P.; Yang, H. Z.; Liu, Q. S.; Zhang, J.; Fang, J. Y.; Zou, S. Z.; Sun, K. Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum-copper nanocubes. Angew. Chem., Int. Ed.2009, 48, 4217–4221.CrossRefGoogle Scholar
[26]
Zhang, J.; Yang, H. Z.; Fang, J. Y.; Zou, S. Z. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett.2010, 10, 638–644.CrossRefGoogle Scholar
[27]
E, B.; Shao, Q.; Bu, L. Z.; Bai, S. X.; Li, Y. J.; Huang, X. Q. Ordered PtPb/Pt core/shell nanodisks as highly active, selective, and stable catalysts for methanol reformation to H2. Adv. Energy Mater.2018, 8, 1703430.CrossRefGoogle Scholar
[28]
Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science2016, 354, 1410–1414.CrossRefGoogle Scholar
[29]
Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr.2005, 220, 567–570.Google Scholar
[30]
Anisimov, V. I.; Aryasetiawan, F.; Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA + U method. J. Phys. Condens. Matter.1997, 9, 767–808.CrossRefGoogle Scholar
[31]
Huang, B. L.; Gillen, R.; Robertson, J. Study of CeO2 and its native defects by density functional theory with repulsive potential. J. Phys. Chem. C2014, 118, 24248–24256.CrossRefGoogle Scholar
[32]
Huang, B. L. Unraveling energy conversion modeling in the intrinsic persistent upconverted luminescence of solids: A study of native point defects in antiferromagnetic Er2O3. Phys. Chem. Chem. Phys.2016, 18, 13564–13582.CrossRefGoogle Scholar
[33]
Hu, J.; Huang, B. L.; Zhang, C. X.; Wang, Z. L.; An, Y. M.; Zhou, D.; Lin, H.; Leung, M. K. H.; Yang, S. H. Engineering stepped edge surface structures of MoS2 sheet stacks to accelerate the hydrogen evolution reaction. Energy Environ. Sci.2017, 10, 593–603.CrossRefGoogle Scholar
[34]
Marzari, N.; Vanderbilt, D.; Payne, M. C. Ensemble density-functional theory for ab initio molecular dynamics of metals and finite-temperature insulators. Phys. Rev. Lett.1997, 79, 1337–1340.CrossRefGoogle Scholar
[35]
Probert, M. I. J.; Payne, M. C. Improving the convergence of defect calculations in supercells: An ab initio study of the neutral silicon vacancy. Phys. Rev. B2003, 67, 075204.CrossRefGoogle Scholar
[36]
Kleinman, L.; Bylander, D. M. Efficacious form for model pseudopotentials. Phys. Rev. Lett.1982, 48, 1425–1428.CrossRefGoogle Scholar
[37]
Louie, S. G.; Froyen, S.; Cohen, M. L. Nonlinear ionic pseudopotentials in spin-density-functional calculations. Phys. Rev. B1982, 26, 1738–1742.CrossRefGoogle Scholar
[38]
Grinberg, I.; Ramer, N. J.; Rappe, A. M. Transferable relativistic diracslater pseudopotentials. Phys. Rev. B2000, 62, 2311–2314.CrossRefGoogle Scholar
[39]
Rappe, A. M.; Rabe, K. M.; Kaxiras, E.; Joannopoulos, J. D. Optimized pseudopotentials. Phys. Rev. B1990, 41, 1227–1230.CrossRefGoogle Scholar
[40]
Navarro, R. M.; Peña, M. A.; Fierro, J. L. G. Hydrogen production reactions from carbon feedstocks: Fossil fuels and biomass. Chem. Rev.2007, 107, 3952–3991.CrossRefGoogle Scholar
[41]
Hull, J. F.; Himeda, Y.; Wang, W. H.; Hashiguchi, B.; Periana, R.; Szalda, D. J.; Muckerman, J. T.; Fujita, E. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nat. Chem.2012, 4, 383–388.CrossRefGoogle Scholar
[42]
Nielsen, M.; Alberico, E.; Baumann, W.; Drexler, H. J.; Junge, H.; Serafino, G.; Beller, M. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature2013, 495, 85–89.CrossRefGoogle Scholar
[43]
Rodríguez-Lugo, R. E.; Trincado, M.; Vogt, M.; Tewes, F.; Santiso-Quinones, G.; Grützmacher, H. A homogeneous transition metal complex for clean hydrogen production from methanol-water mixtures. Nat. Chem.2013, 5, 342–347.CrossRefGoogle Scholar
[44]
Davda, R. R.; Shabaker, J. W.; Huber, G. W.; Cortright, R. D.; Dumesic, J. A. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts. Appl. Catal. B Environ.2005, 56, 171–186.CrossRefGoogle Scholar