Advertisement

Inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets as high-performance cathodes for aqueous zinc-ion batteries

  • Hao Ren
  • Jin Zhao
  • Lan Yang
  • Qinghua Liang
  • Srinivasan MadhaviEmail author
  • Qingyu YanEmail author
Research Article

Abstract

Considering the high safety, low-cost and high capacity, aqueous zinc ion batteries have been a potential candidate for energy storage ensuring smooth electricity supply. Herein, we have synthesized inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets by a solution template method at mild temperature. The ultrathin nanosheets with the thickness as small as 1 nm are well separated without obvious aggregation. Used as cathode material for aqueous zinc ion batteries, the few-layered ultrathin nanosheets combined with the inverse opal structure guarantee excellent performance. A high specific discharge capacity of 262.9 mAh·g−1 is retained for the 100th cycle at a current density of 300 mA·g−1 with a high capacity retention of 95.6%. A high specific discharge capacity of 121 mAh·g−1 at a high current density of 2,000 mA·g−1 is achieved even after 5,000 long-term cycles. The ex-situ X-ray diffraction (XRD) patterns, selected-area electron diffraction (SAED) patterns and high-resolution transmission electron microscopy (HRTEM) results demonstrate that the discharge/charge processes involve the reversible formation of zinc sulfate hydroxide hydrate on the cathode while in-plane crystal structure of the layered birnessite MnO2 could be maintained. This unique structured MnO2 is a promising candidate as cathode material for high capacity, high rate capability and long-term aqueous zinc-ion batteries.

Keywords

inverse opal ultrathin few-layered nanosheets MnO2 zinc ion batteries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work was financially supported by the National Research Foundation of Singapore (NRF) Investigatorship, award Number NRF2016NRF-NRFI001-22. The authors also acknowledge the Facility for Analysis, Characterization, Testing and Simulation (FACTS), Nanyang Technological University, Singapore, for use of the TEM JEOL 2010UHR, JEOL 2100F, FESEM JEOL 7600F, XPS Kratos AXIS Supra and XRD Bruker D8 Advance facilities.

Supplementary material

12274_2019_2303_MOESM1_ESM.pdf (10 mb)
Inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets as high-performance cathodes for aqueous zinc-ion batteries

References

  1. [1]
    Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.CrossRefGoogle Scholar
  2. [2]
    Braff, W. A.; Mueller, J. M.; Trancik, J. E. Value of storage technologies for wind and solar energy. Nat. Clim. Change 2016, 6, 964–969.CrossRefGoogle Scholar
  3. [3]
    Barthelmie, R. J.; Pryor, S. C. Potential contribution of wind energy to climate change mitigation. Nat. Clim. Change 2014, 4, 684–688.CrossRefGoogle Scholar
  4. [4]
    Ren, H.; Shao, H.; Zhang, L. J.; Guo, D.; Jin, Q.; Yu, R. B.; Wang, L.; Li, Y. L.; Wang, Y.; Zhao, H. J. et al. A new graphdiyne nanosheet/Pt nanoparticle-based counter electrode material with enhanced catalytic activity for dye-sensitized solar cells. Adv. Energy Mater. 2015, 5, 1500296.CrossRefGoogle Scholar
  5. [5]
    Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0< x ≤ −1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789.CrossRefGoogle Scholar
  6. [6]
    Liu, T.; Zhang, M.; Wang, Y. L.; Wang, Q. Y.; Lv, C.; Liu, K. X.; Suresh, S.; Yin, Y. H.; Hu, Y. Y.; Li, Y. S. et al. Engineering the surface/interface of horizontally oriented carbon nanotube macrofilm for foldable lithium-ion battery withstanding variable weather. Adv. Energy Mater. 2018, 8, 1802349.CrossRefGoogle Scholar
  7. [7]
    Yang, H.; Qi, K.; Gong, L. Q.; Liu, W. L.; Zaman, S.; Guo, X. P.; Qiu, Y. B.; Xia, B. Y. Lead oxide enveloped in N-doped graphene oxide composites for enhanced high-rate partial-state-of-charge performance of lead-acid battery. ACS Sustain. Chem. Eng. 2018, 6, 11408–11413.CrossRefGoogle Scholar
  8. [8]
    Wang, D. X.; Chen, N.; Li, M. L.; Wang, C. Z.; Ehrenberg, H.; Bie, X. F.; Wei, Y. J.; Chen, G.; Du, F. Na3V2(PO4)3/C composite as the intercalationtype anode material for sodium-ion batteries with superior rate capability and long-cycle life. J. Mater. Chem. A 2015, 3, 8636–8642.CrossRefGoogle Scholar
  9. [9]
    Huang, Z. D.; Hou, H. S.; Zhang, Y.; Wang, C.; Qiu, X. Q.; Ji, X. B. Layer-tunable phosphorene modulated by the cation insertion rate as a sodium-storage anode. Adv. Mater. 2017, 29, 1702372.CrossRefGoogle Scholar
  10. [10]
    Ge, P.; Hou, H. S.; Banks, C. E.; Foster, C. W.; Li, S. J.; Zhang, Y.; He, J. Y.; Zhang, C. Y.; Ji, X. B. Binding MoSe2 with carbon constrained in carbonous nanosphere towards high-capacity and ultrafast Li/Na-ion storage. Energy Stor. Mater. 2018, 12, 310–323.CrossRefGoogle Scholar
  11. [11]
    Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30Years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.CrossRefGoogle Scholar
  12. [12]
    Ren, H.; Yu, R. B.; Wang, J. Y.; Jin, Q.; Yang, M.; Mao, D.; Kisailus, D.; Zhao, H. J.; Wang, D. Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries. Nano Lett. 2014, 14, 6679–6684.CrossRefGoogle Scholar
  13. [13]
    Ren, H.; Sun, J. J.; Yu, R. B.; Yang, M.; Gu, L.; Liu, P. R.; Zhao, H. J.; Kisailus, D.; Wang, D. Controllable synthesis of mesostructures from TiO2 hollow to porous nanospheres with superior rate performance for lithium ion batteries. Chem. Sci. 2016, 7, 793–798.CrossRefGoogle Scholar
  14. [14]
    Wang, F.; Suo, L. M.; Liang, Y. J.; Yang, C. Y.; Han, F. D.; Gao, T.; Sun, W.; Wang, C. S. Spinel LiNi0.5Mn1.5O4 Cathode for high-energy aqueous lithium-ion batteries. Adv. Energy Mater. 2017, 7, 1600922.CrossRefGoogle Scholar
  15. [15]
    Wang, H. B.; Zhang, T. R.; Chen, C.; Ling, M.; Lin, Z.; Zhang, S. Q.; Pan, F.; Liang, C. D. High-performance aqueous symmetric sodium-ion battery using NASICON-structured Na2VTi(PO4)3. Nano Res. 2018, 11, 490–498.CrossRefGoogle Scholar
  16. [16]
    Wang, Y. G.; Yi, J.; Xia, Y. Y. Recent progress in aqueous lithium-ion batteries. Adv. Energy Mater. 2012, 2, 830–840.CrossRefGoogle Scholar
  17. [17]
    Luo, J. Y.; Cui, W. J.; He, P.; Xia, Y. Y. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2010, 2, 760–765.CrossRefGoogle Scholar
  18. [18]
    Li, Z.; Young, D.; Xiang, K.; Carter, W. C.; Chiang, Y. M. Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2 system. Adv. Energy Mater. 2013, 3, 290–294.CrossRefGoogle Scholar
  19. [19]
    Wessells, C. D.; Peddada, S. V.; Huggins, R. A.; Cui, Y. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 2011, 11, 5421–5425.CrossRefGoogle Scholar
  20. [20]
    Guduru, R. K.; Icaza, J. C. A brief review on multivalent intercalation batteries with aqueous electrolytes. Nanomaterials 2016, 6, 41.CrossRefGoogle Scholar
  21. [21]
    Chen, L.; Bao, J. L.; Dong, X.; Truhlar, D. G.; Wang, Y.; Wang, C.; Xia, Y. Aqueous Mg-ion battery based on polyimide anode and prussian blue cathode. ACS Energy Lett. 2017, 2, 1115–1121.CrossRefGoogle Scholar
  22. [22]
    Verma, V.; Kumar, S.; Manalastas, W. Jr.; Satish, R.; Srinivasan, M. Progress in rechargeable aqueous zinc-and aluminum-ion battery electrodes: Challenges and outlook. Adv. Sustain. Syst. 2019, 3, 1800111.CrossRefGoogle Scholar
  23. [23]
    Alfaruqi, M. H.; Mathew, V.; Song, J. J.; Kim, S.; Islam, S.; Pham, D. T.; Jo, J.; Kim, S.; Baboo, J. P.; Xiu, Z. L. et al. Electrochemical zinc intercalation in lithium vanadium oxide: A high-capacity zinc-ion battery cathode. Chem. Mater. 2017, 29, 1684–1694.CrossRefGoogle Scholar
  24. [24]
    Yan, M. Y.; He, P.; Chen, Y.; Wang, S. Y.; Wei, Q. L.; Zhao, K. N.; Xu, X.; An, Q. Y.; Shuang, Y.; Shao, Y. Y. et al. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 2018, 30, 1703725.CrossRefGoogle Scholar
  25. [25]
    Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119.CrossRefGoogle Scholar
  26. [26]
    Hu, P.; Zhu, T.; Wang, X. P.; Wei, X. J.; Yan, M. Y.; Li, J. T.; Luo, W.; Yang, W.; Zhang, W. C.; Zhou, L. et al. Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 2018, 18, 1758–1763.CrossRefGoogle Scholar
  27. [27]
    Wei, T. Y.; Li, Q.; Yang, G. Z.; Wang, C. X. High-rate and durable aqueous zinc ion battery using dendritic V10O24·12H2O cathode material with large interlamellar spacing. Electrochim. Acta 2018, 287, 60–67.CrossRefGoogle Scholar
  28. [28]
    Xia, C.; Guo, J.; Li, P.; Zhang, X. X.; Alshareef, H. N. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew. Chem., Int. Ed. 2018, 57, 3943–3948.CrossRefGoogle Scholar
  29. [29]
    Zhang, L. Y.; Chen, L.; Zhou, X. F.; Liu, Z. P. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 2015, 5, 1400930.CrossRefGoogle Scholar
  30. [30]
    Trócoli, R.; La Mantia, F. An aqueous zinc-ion battery based on copper hexacyanoferrate. ChemSusChem. 2015, 8, 481–485.CrossRefGoogle Scholar
  31. [31]
    Zhang, N.; Cheng, F. Y.; Liu, Y. C.; Zhao, Q.; Lei, K. X.; Chen, C. C.; Liu, X. S.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894–12901.CrossRefGoogle Scholar
  32. [32]
    Zhu, C. Y.; Fang, G. Z.; Zhou, J.; Guo, J. H.; Wang, Z. Q.; Wang, C.; Li, J. Y.; Tang, Y.; Liang, S. Q. Binder-free stainless steel@Mn3O4 nanoflower composite: A high-activity aqueous zinc-ion battery cathode with highcapacity and long-cycle-life. J. Mater. Chem. A 2018, 6, 9677–9683.CrossRefGoogle Scholar
  33. [33]
    Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.CrossRefGoogle Scholar
  34. [34]
    Sun, W.; Wang, F.; Hou, S.; Yang, C. Y.; Fan, X. L.; Ma, Z. H.; Gao, T.; Han, F. D.; Hu, R. Z.; Zhu, M. et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 2017, 139, 9775–9778.CrossRefGoogle Scholar
  35. [35]
    Xu, C. J.; Li, B. H.; Du, H. D.; Kang, F. Y. Energetic zinc ion chemistry: The rechargeable zinc ion battery. Angew. Chem. 2012, 124, 957–959.CrossRefGoogle Scholar
  36. [36]
    Zhang, N.; Cheng, F. Y.; Liu, J. X.; Wang, L. B.; Long, X. H.; Liu, X. S.; Li, F. J.; Chen, J. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 2017, 8, 405.CrossRefGoogle Scholar
  37. [37]
    Lee, B.; Lee, H. R.; Kim, H.; Chung, K. Y.; Cho, B. W.; Oh, S. H. Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. Chem. Commun. 2015, 51, 9265–9268.CrossRefGoogle Scholar
  38. [38]
    Alfaruqi, M. H.; Mathew, V.; Gim, J.; Kim, S.; Song, J. J.; Baboo, J. P.; Choi, S. H.; Kim, J. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 2015, 27, 3609–3620.CrossRefGoogle Scholar
  39. [39]
    Huang, J. H.; Wang, Z.; Hou, M. Y.; Dong, X. L.; Liu, Y.; Wang, Y. G.; Xia, Y. Y. Polyaniline-intercalated manganese dioxide nanolayers as a highperformance cathode material for an aqueous zinc-ion battery. Nat. Commun. 2018, 9, 2906.CrossRefGoogle Scholar
  40. [40]
    Alfaruqi, M. H.; Gim, J.; Kim, S.; Song, J. J.; Pham, D. T.; Jo, J.; Xiu, Z. L.; Mathew, V.; Kim, J. A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun. 2015, 60, 121–125.CrossRefGoogle Scholar
  41. [41]
    Liu, Z. N.; Xu, K. L.; Sun, H.; Yin, S. Y. One-step synthesis of single-layer MnO2 nanosheets with multi-role sodium dodecyl sulfate for high-performance pseudocapacitors. Small 2015, 11, 2182–2191.CrossRefGoogle Scholar
  42. [42]
    Mendoza-Sánchez, B.; Coelho, J.; Pokle, A.; Nicolosi, V. A 2D graphenemanganese oxide nanosheet hybrid synthesized by a single step liquid-phase co-exfoliation method for supercapacitor applications. Electrochim. Acta 2015, 174, 696–705.CrossRefGoogle Scholar
  43. [43]
    Sun, Y. G.; Wang, L.; Liu, Y. Z.; Ren, Y. Birnessite-type MnO2 nanosheets with layered structures under high pressure: Elimination of crystalline stacking faults and oriented laminar assembly. Small 2015, 11, 300–305.CrossRefGoogle Scholar
  44. [44]
    Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610–7630.CrossRefGoogle Scholar
  45. [45]
    Qu, J. Y.; Shi, L.; He, C. X.; Gao, F.; Li, B. B.; Zhou, Q.; Hu, H.; Shao, G. H.; Wang, X. Z.; Qiu, J. S. Highly efficient synthesis of graphene/MnO2 hybrids and their application for ultrafast oxidative decomposition of methylene blue. Carbon 2014, 66, 485–492.CrossRefGoogle Scholar
  46. [46]
    Zhu, C. Z.; Guo, S. J.; Fang, Y. X.; Han, L.; Wang, E. K.; Dong, S. J. One-step electrochemical approach to the synthesis of Graphene/MnO2 nanowall hybrids. Nano Res. 2011, 4, 648–657.CrossRefGoogle Scholar
  47. [47]
    Nesbitt, H. W.; Banerjee, D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am. Mineral. 1998, 83, 305–315.CrossRefGoogle Scholar
  48. [48]
    Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730.CrossRefGoogle Scholar
  49. [49]
    Banerjee, D.; Nesbitt, H. W. XPS study of dissolution of birnessite by humate with constraints on reaction mechanism. Geochim. Cosmochim. Acta 2001, 65, 1703–1714.CrossRefGoogle Scholar
  50. [50]
    Lian, P. C.; Dong, Y. F.; Wu, Z. S.; Zheng, S. H.; Wang, X. H.; Wang, S.; Sun, C. L.; Qin, J. Q.; Shi, X. Y.; Bao, X. H. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 2017, 40, 1–8.CrossRefGoogle Scholar
  51. [51]
    Chen, X.; Yan, S. J.; Wang, N.; Peng, S. K.; Wang, C.; Hong, Q. H.; Zhang, X. Y.; Dai, S. L. Facile synthesis and characterization of ultrathin δ-MnO2 nanoflakes. RSC Adv. 2017, 7, 55734–55740.CrossRefGoogle Scholar
  52. [52]
    Dang, L. Y.; Wei, C. Z.; Ma, H. F.; Lu, Q. Y.; Gao, F. Three-dimensional honeycomb-like networks of birnessite manganese oxide assembled by ultrathin two-dimensional nanosheets with enhanced Li-ion battery performances. Nanoscale 2015, 7, 8101–8109.CrossRefGoogle Scholar
  53. [53]
    Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.CrossRefGoogle Scholar
  54. [54]
    Muller, G. A.; Cook, J. B.; Kim, H. S.; Tolbert, S. H.; Dunn, B. High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 2015, 15, 1911–1917.CrossRefGoogle Scholar
  55. [55]
    Chao, D. L.; Zhu, C. R.; Song, M.; Liang, P.; Zhang, X.; Tiep, N. H.; Zhao, H. F.; Wang, J.; Wang, R. M.; Zhang, H. et al. A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 2018, 30, 1803181.CrossRefGoogle Scholar
  56. [56]
    Nakayama, N.; Ohmoto, K.; Fujiwara, K.; Nakatsuka, A. A TEM study of birnessite-type K0.33MnO2-in-plane ordering and layer stacking. Trans. Mater. Res. Soc. Jpn. 2010, 35, 381–384.CrossRefGoogle Scholar
  57. [57]
    Li, H. F.; Han, C. P.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J. et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 2018, 11, 941–951.CrossRefGoogle Scholar
  58. [58]
    Ma, L. T.; Chen, S. M.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J.; Zapien, J. A.; Zhi, C. Y. Flexible waterproof rechargeable hybrid zinc batteries initiated by multifunctional oxygen vacancies-rich cobalt oxide. ACS Nano 2018, 12, 8597–8605.CrossRefGoogle Scholar
  59. [59]
    Ma, L. T.; Chen, S. M.; Li, H. F.; Ruan, Z. H.; Tang, Z. J.; Liu, Z. X.; Wang, Z. F.; Huang, Y.; Pei, Z. X.; Zapien, J. A. et al. Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(III) rich-electrode. Energy Environ. Sci. 2018, 11, 2521–2530.CrossRefGoogle Scholar
  60. [60]
    Hoang, T. K. A.; Doan, T. N. L.; Sun, K. E. K.; Chen, P. Corrosion chemistry and protection of zinc & zinc alloys by polymer-containing materials for potential use in rechargeable aqueous batteries. RSC Adv. 2015, 5, 41677–41691.CrossRefGoogle Scholar
  61. [61]
    Kundu, D.; Hosseini Vajargah, S.; Wan, L. W.; Adams, B.; Prendergast, D.; Nazar, L. F. Aqueous vs. nonaqueous Zn-ion batteries: Consequences of the desolvation penalty at the interface. Energy Environ. Sci. 2018, 11, 881–892.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Energy Research Institute (ERI@N)Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations