Solvent-free nanocasting toward universal synthesis of ordered mesoporous transition metal sulfide@N-doped carbon composites for electrochemical applications

  • Jiahui Zhu
  • Zhi Chen
  • Lin Jia
  • Yuqi Lu
  • Xiangru Wei
  • Xiaoning Wang
  • Winston Duo Wu
  • Na Han
  • Yanguang LiEmail author
  • Zhangxiong WuEmail author
Research Article


Transition metal sulfides (TMSs) have a wide range of applications owing to their intriguing properties. Significant efforts have been devoted to nanostructuring TMSs to enhance their properties and performance, still there is a high need in general synthesis of TMS nanostructures. Herein, for the first time, a simple solvent free reactive nanocasting approach that integrates solid precursor loading, in-situ sulfuration and carbonization into a single heating step is developed for the universal synthesis of ordered mesoporous TMS@N-doped carbon composites (denoted as OM-TMS@NCs) with methionine (Met) and metal chlorides as the precursors and the mesoporous silica (SBA-15) as the hard template. A series of OM-TMS@NCs with a hexagonal mesostructure, ultra-high surface areas (430–754 m2·g−1), large pore volumes (0.85–1.32 cm3·g−1), and unique TMS stoichiometries, including MoS2, Fe7S8, Co9S8, NiS, Cu7S4 and ZnS, are obtained. Two distinct structure configurations, namely, highly dispersed ultrathin TMS nanosheets within NCs and TMS@NC co-nanowire arrays, can be obtained depending on different metals. The structure evolution of the OM-TMS@NCs over the solvent-free nanocasting process is studied in detail for a deep understanding of the synthesis. As demonstrations, these materials are promising for electrocatalytic hydrogen evolution reaction and lithium ion storage with high performances.


transition metal sulfides mesoporous materials solvent-free nanocasting in-situ sulfuration carbon-based composites electrochemical applications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Financial supports from the National Natural Science Foundation of China (Nos. 21875153 and 21501125), the Natural Science Foundation of Jiangsu Province (No. BK20150312), the Suzhou Bureau of Science and Technology (No. SYG201637) are much appreciated. We also thank the Young Thousand Talented Program (2015) of China, the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions and the Project of Scientific and Technologic Infrastructure of Suzhou (No. SZS201708) for supports. Z. X. W. acknowledges the start-up fund from Soochow University. Y. G. L. acknowledge the support from the PAPD of Jiangsu Higher Education Institutions, and Collaborative Innovation Center of Suzhou Nano Science and Technology. We greatly appreciate Professor Dongyuan Zhao and Professor Biao Kong in Fudan University for insightful discussions on the manuscript.

Supplementary material

12274_2019_2299_MOESM1_ESM.pdf (6.4 mb)
Solvent-free nanocasting toward universal synthesis of ordered mesoporous transition metal sulfide@N-doped carbon composites for electrochemical applications


  1. [1]
    Lai, C. H.; Lu, M. Y.; Chen, L. J. Metal sulfide nanostructures: Synthesis, properties and applications in energy conversion and storage. J. Mater. Chem. 2012, 22, 19–30.CrossRefGoogle Scholar
  2. [2]
    Chang, K.; Hai, X.; Ye, J. H. Transition metal disulfides as noble-metalalternative co-catalysts for solar hydrogen production. Adv. Energy Mater. 2016, 6, 1502555.CrossRefGoogle Scholar
  3. [3]
    Beinert, H.; Holm, R. H.; Munck, E. Iron-sulfur clusters: Nature’s modular, multipurpose structures. Science 1997, 277, 653–659.CrossRefGoogle Scholar
  4. [4]
    Harris, S.; Chianelli, R. R. Catalysis by transition metal sulfides: The relation between calculated electronic trends and HDS activity. J. Catal. 1984, 86, 400–412.CrossRefGoogle Scholar
  5. [5]
    Gao, M. R.; Xu, Y. F.; Jiang, J.; Yu, S. H. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 2013, 42, 2986–3017.CrossRefGoogle Scholar
  6. [6]
    Kong, D. S.; Cha, J. J.; Wang, H. T.; Lee, H. R.; Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 2013, 6, 3553–3558.CrossRefGoogle Scholar
  7. [7]
    Luo, W. Q.; Shi, H.; Schachtl, E.; Gutierrez, O. Y.; Lercher, J. A. Active sites on nickel-promoted transition-metal sulfides that catalyze hydrogenation of aromatic compounds. Angew. Chem., Int. Ed. 2018, 57, 14555–14559.CrossRefGoogle Scholar
  8. [8]
    Mahmood, N.; Zhang, C. Z.; Hou, Y. L. Nickel sulfide/nitrogen-doped graphene composites: Phase-controlled synthesis and high performance anode materials for lithium ion batteries. Small 2013, 9, 1321–1328.CrossRefGoogle Scholar
  9. [9]
    Feng, L. L.; Li, G. D.; Liu, Y. P.; Wu, Y. Y.; Chen, H.; Wang, Y.; Zou, Y. C.; Wang, D. J.; Zou, X. X. Carbon-armored Co9S8 nanoparticles as all-pH efficient and durable H2-evolving electrocatalysts. ACS Appl. Mater. Interfaces 2015, 7, 980–988.CrossRefGoogle Scholar
  10. [10]
    Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519–527.CrossRefGoogle Scholar
  11. [11]
    Xia, X. H.; Zhu, C. R.; Luo, J. S.; Zeng, Z. Y.; Guan, C.; Ng, C. F.; Zhang, H.; Fan, H. J. Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application. Small 2014, 10, 766–773.CrossRefGoogle Scholar
  12. [12]
    Zhou, J. H.; Wang, L.; Yang, M. Y.; Wu, J. H.; Chen, F. J.; Huang, W. J.; Han, N.; Ye, H. L.; Zhao, F. P.; Li, Y. Y. et al. Hierarchical VS2 nanosheet assemblies: A universal host material for the reversible storage of alkali metal ions. Adv. Mater. 2017, 29, 1702061.CrossRefGoogle Scholar
  13. [13]
    Lu, Q. P.; Yu, Y. F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D transitionmetal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917–1933.CrossRefGoogle Scholar
  14. [14]
    Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227.CrossRefGoogle Scholar
  15. [15]
    Chen, J. S.; Guan, C.; Gui, Y.; Blackwood, D. J. Rational design of selfsupported Ni3S2 nanosheets array for advanced asymmetric supercapacitor with a superior energy density. ACS Appl. Mater. Interfaces 2017, 9, 496–504.CrossRefGoogle Scholar
  16. [16]
    Huang, K. J.; Zhang, J. Z.; Shi, G. W.; Liu, Y. M. Hydrothermal synthesis of molybdenum disulfide nanosheets as supercapacitors electrode material. Electrochim. Acta 2014, 132, 397–403.CrossRefGoogle Scholar
  17. [17]
    Zhou, Y. L.; Yan, D.; Xu, H. Y.; Feng, J. K.; Jiang, X. L.; Yue, J.; Yang, J.; Qian, Y. T. Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 2015, 12, 528–537.CrossRefGoogle Scholar
  18. [18]
    Peng, S. J.; Li, L. L.; Tan, H. T.; Cai, R.; Shi, W. H.; Li, C. C.; Mhaisalkar, S. G.; Srinivasan, M.; Ramakrishna, S.; Yan, Q. Y. MS2 (M = Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics. Adv. Funct. Mater. 2014, 24, 2155–2162.CrossRefGoogle Scholar
  19. [19]
    Cheng, Z. G.; Wang, S. Z.; Si, D. J.; Geng, B. Y. Controlled synthesis of copper sulfide 3D nanoarchitectures through a facile hydrothermal route. J. Alloys Compd. 2010, 492, L44–L49.CrossRefGoogle Scholar
  20. [20]
    Yu, X. Y.; Yu, L.; Shen, L. F.; Song, X. H.; Chen, H. Y.; Lou, X. W. General formation of MS (M = Ni, Cu, Mn) box-in-box hollow structures with enhanced pseudocapacitive properties. Adv. Funct. Mater. 2014, 24, 7440–7446.CrossRefGoogle Scholar
  21. [21]
    Chen, T.; Zhang, Z. W.; Cheng, B. R.; Chen, R. P.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Liu, J.; Jin, Z. Self-templated formation of interlaced carbon nanotubes threaded hollow Co3S4 nanoboxes for high-rate and heat-resistant lithium–sulfur batteries. J. Am. Chem. Soc. 2017, 139, 12710–12715.CrossRefGoogle Scholar
  22. [22]
    Li, D. J.; Maiti, U. N.; Lim, J.; Choi, D. S.; Lee, W. J.; Oh, Y.; Lee, G. Y.; Kim, S. O. Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett. 2014, 14, 1228–1233.CrossRefGoogle Scholar
  23. [23]
    Liao, L.; Zhu, J.; Bian, X. J.; Zhu, L. N.; Scanlon, M. D.; Girault, H. H.; Liu, B. H. MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv. Funct. Mater. 2013, 23, 5326–5333.CrossRefGoogle Scholar
  24. [24]
    Wang, Q. F.; Zou, R. Q.; Xia, W.; Ma, J.; Qiu, B.; Mahmood, A.; Zhao, R.; Yang, Y. Y. C.; Xia, D. G.; Xu, Q. Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries. Small 2015, 11, 2511–2517.CrossRefGoogle Scholar
  25. [25]
    Yonemoto, B. T.; Hutchings, G. S.; Jiao, F. A general synthetic approach for ordered mesoporous metal sulfides. J. Am. Chem. Soc. 2014, 136, 8895–8898.CrossRefGoogle Scholar
  26. [26]
    Luc, W.; Jiao, F. Synthesis of nanoporous metals, oxides, carbides, and sulfides: Beyond nanocasting. Acc. Chem. Res. 2016, 49, 1351–1358.CrossRefGoogle Scholar
  27. [27]
    Miao, R.; Dutta, B.; Sahoo, S.; He, J. K.; Zhong, W.; Cetegen, S. A.; Jiang, T.; Alpay, S. P.; Suib, S. L. Mesoporous iron sulfide for highly efficient electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2017, 139, 13604–13607.CrossRefGoogle Scholar
  28. [28]
    Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.CrossRefGoogle Scholar
  29. [29]
    Shi, Y. F.; Wan, Y.; Liu, R. L.; Tu, B.; Zhao, D. Y. Synthesis of highly ordered mesoporous crystalline WS2 and MoS2 via a high-temperature reductive sulfuration route. J. Am. Chem. Soc. 2007, 129, 9522–9531.CrossRefGoogle Scholar
  30. [30]
    Chen, X. H.; Fan, R. Low-temperature hydrothermal synthesis of transition metal dichalcogenides. Chem. Mater. 2001, 13, 802–805.CrossRefGoogle Scholar
  31. [31]
    Bao, S. J.; Li, C. M.; Guo, C. X.; Qiao, Y. Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors. J. Power Sources 2008, 180, 676–681.CrossRefGoogle Scholar
  32. [32]
    Dunne, P. W.; Starkey, C. L.; Gimeno-Fabra, M.; Lester, E. H. The rapid size- and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials. Nanoscale 2014, 6, 2406–2418.CrossRefGoogle Scholar
  33. [33]
    Lu, A. H.; Schüth, F. Nanocasting: A versatile strategy for creating nanostructured porous materials. Adv. Mater. 2006, 18, 1793–1805.CrossRefGoogle Scholar
  34. [34]
    Yang, H. F.; Zhao, D. Y. Synthesis of replica mesostructures by the nanocasting strategy. J. Mater. Chem. 2005, 15, 1217–1231.Google Scholar
  35. [35]
    Du, N.; Zhang, H.; Chen, J. E.; Sun, J. Y.; Chen, B. D.; Yang, D. R. Metal oxide and sulfide hollow spheres: Layer-by-layer synthesis and their application in lithium-ion battery. J. Phys. Chem. B 2008, 112, 14836–14842.CrossRefGoogle Scholar
  36. [36]
    Luo, M.; Liu, Y.; Hu, J. C.; Li, J. L.; Liu, J.; Richards, R. M. General strategy for one-pot synthesis of metal sulfide hollow spheres with enhanced photocatalytic activity. Appl. Catal. B Environ. 2012, 125, 180–188.CrossRefGoogle Scholar
  37. [37]
    Dolui, K.; Rungger, I.; Sanvito, S. Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate. Phys. Rev. B 2013, 87, 165402.CrossRefGoogle Scholar
  38. [38]
    Kwok, K. M.; Ong, S. W. D.; Chen, L. W.; Zeng, H. C. Constrained growth of MoS2 nanosheets within a mesoporous silica shell and its effects on defect sites and catalyst stability for H2S decomposition. ACS Catal. 2018, 8, 714–724.CrossRefGoogle Scholar
  39. [39]
    Bergwerff, J. A.; Jansen, M.; Leliveld, B. G.; Visser, T.; de Jong, K. P.; Weckhuysen, B. M. Influence of the preparation method on the hydrotreating activity of MoS2/Al2O3 extrudates: A Raman microspectroscopy study on the genesis of the active phase. J. Catal. 2006, 243, 292–302.CrossRefGoogle Scholar
  40. [40]
    Lee, J. J.; Kim, H.; Moon, S. H. Preparation of highly loaded, dispersed MoS2/Al2O3 catalysts for the deep hydrodesulfurization of dibenzothiophenes. Appl. Catal. B Environ. 2003, 41, 171–180.CrossRefGoogle Scholar
  41. [41]
    Youn, D. H.; Han, S.; Kim, J. Y.; Kim, J. Y.; Park, H.; Choi, S. H.; Lee, J. S. Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube-graphene hybrid support. ACS Nano 2014, 8, 5164–5173.CrossRefGoogle Scholar
  42. [42]
    Lei, T. Y.; Chen, W.; Huang, J. W.; Yan, C. Y.; Sun, H. X.; Wang, C.; Zhang, W. L.; Li, Y. R.; Xiong, J. Multi-functional layered WS2 nanosheets for enhancing the performance of lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1601843.CrossRefGoogle Scholar
  43. [43]
    Wu, C.; Maier, J.; Yu, Y. Generalizable synthesis of metal-sulfides/carbon hybrids with multiscale, hierarchically ordered structures as advanced electrodes for lithium storage. Adv. Mater. 2016, 28, 174–180.CrossRefGoogle Scholar
  44. [44]
    Han, C.; Li, Q.; Wang, D. W.; Lu, Q. Q.; Xing, Z. C.; Yang, X. R. Cobalt sulfide nanowires core encapsulated by a N, S codoped graphitic carbon shell for efficient oxygen reduction reaction. Small 2018, 14, 1703642.CrossRefGoogle Scholar
  45. [45]
    Xiong, Q. Z.; Wang, Y.; Liu, P. F.; Zheng, L. R.; Wang, G. Z.; Yang, H. G.; Wong, P. K.; Zhang, H. M.; Zhao, H. J. Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting. Adv. Mater. 2018, 30, 1801450.CrossRefGoogle Scholar
  46. [46]
    Zhang, X. E.; Zhao, R. F.; Wu, Q. H.; Li, W. L.; Shen, C.; Ni, L. B.; Yan, H.; Diao, G. W.; Chen, M. Petal-like MoS2 nanosheets space-confined in hollow mesoporous carbon spheres for enhanced lithium storage performance. ACS Nano 2017, 11, 8429–8436.CrossRefGoogle Scholar
  47. [47]
    Ye, C.; Zhang, L.; Guo, C. X.; Li, D. D.; Vasileff, A.; Wang, H. H.; Qiao, S. Z. A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries. Adv. Funct. Mater. 2017, 27, 1702524.CrossRefGoogle Scholar
  48. [48]
    Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.CrossRefGoogle Scholar
  49. [49]
    Chen, B.; Meng, Y. H.; He, F.; Liu, E. Z.; Shi, C. S.; He, C. N.; Ma, L. Y.; Li, Q. Y.; Li, J. J.; Zhao, N. Q. Thermal decomposition-reduced layer-by-layer nitrogen-doped graphene/MoS2/nitrogen-doped graphene heterostructure for promising lithium-ion batteries. Nano Energy 2017, 41, 154–163.CrossRefGoogle Scholar
  50. [50]
    Wang, Y. M.; Wu, Z. Y.; Shi, L. Y.; Zhu, J. H. Rapid functionalization of mesoporous materials: Directly dispersing metal oxides into as-prepared SBA-15 occluded with template. Adv. Mater. 2005, 17, 323–327.CrossRefGoogle Scholar
  51. [51]
    Wang, Y. M.; Wu, Z. Y.; Wang, H. J.; Zhu, J. H. Fabrication of metal oxides occluded in ordered mesoporous hosts via a solid-state grinding route: The influence of host–guest interactions. Adv. Funct. Mater. 2006, 16, 2374–2386.CrossRefGoogle Scholar
  52. [52]
    Gao, X. M.; Chen, Z.; Yao, Y.; Zhou, M. Y.; Liu, Y.; Wang, J. X.; Wu, W. D.; Chen, X. D.; Wu, Z. X.; Zhao, D. Y. Direct heating amino acids with silica: A universal solvent-free assembly approach to highly nitrogen-doped mesoporous carbon materials. Adv. Funct. Mater. 2016, 26, 6649–6661.CrossRefGoogle Scholar
  53. [53]
    Matte, H. S. S. R.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem., Int. Ed. 2010, 49, 4059–4062.CrossRefGoogle Scholar
  54. [54]
    Liu, K. K.; Zhang, W. J.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C. Y.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538–1544.CrossRefGoogle Scholar
  55. [55]
    Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552.CrossRefGoogle Scholar
  56. [56]
    Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998, 120, 6024–6036.CrossRefGoogle Scholar
  57. [57]
    Yin, Y.; Han, J. C.; Zhang, Y. M.; Zhang, X. H.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X. J.; Wang, Y.; Zhang, Z. H. et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 2016, 138, 7965–7972.CrossRefGoogle Scholar
  58. [58]
    Sui, C. X.; Chen, K.; Zhao, L. M.; Zhou, L.; Wang, Q. Q. MoS2-modified porous gas diffusion layer with air-solid-liquid interface for efficient electrocatalytic water splitting. Nanoscale 2018, 10, 15324–15331.CrossRefGoogle Scholar
  59. [59]
    Guo, B. J.; Yu, K.; Li, H. L.; Song, H. L.; Zhang, Y. Y.; Lei, X.; Fu, H.; Tan, Y. H.; Zhu, Z. Q. Hollow structured micro/nano MoS2 spheres for high electrocatalytic activity hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 5517–5525.CrossRefGoogle Scholar
  60. [60]
    Morales-Guio, C. G.; Hu, X. L. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc. Chem. Res. 2014, 47, 2671–2681.CrossRefGoogle Scholar
  61. [61]
    Ding, J. B.; Zhou, Y.; Li, Y. G.; Guo, S. J.; Huang, X. Q. MoS2 nanosheet assembling superstructure with a three-dimensional ion accessible site: A new class of bifunctional materials for batteries and electrocatalysis. Chem. Mater. 2016, 28, 2074–2080.CrossRefGoogle Scholar
  62. [62]
    Zhang, L.; Liu, P. F.; Li, Y. H.; Wang, C. W.; Zu, M. Y.; Fu, H. Q.; Yang, X. H.; Yang, H. G. Accelerating neutral hydrogen evolution with tungsten modulated amorphous metal hydroxides. ACS Catal. 2018, 8, 5200–5205.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jiahui Zhu
    • 1
  • Zhi Chen
    • 1
  • Lin Jia
    • 2
  • Yuqi Lu
    • 1
  • Xiangru Wei
    • 1
  • Xiaoning Wang
    • 1
  • Winston Duo Wu
    • 1
  • Na Han
    • 2
  • Yanguang Li
    • 2
    Email author
  • Zhangxiong Wu
    • 1
    Email author
  1. 1.Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouChina
  2. 2.Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and DevicesSoochow UniversitySuzhouChina

Personalised recommendations