An extreme-condition model for quantifying growth kinetics of colloidal metal nanoparticles

  • Siyu Wu
  • Yugang SunEmail author
Research Article


A strategy has been developed for analyzing growth kinetics of colloidal metal nanoparticle quantitatively by focusing both the very early and the very late growth stages, at which the size of growing nanoparticles and the reaction time follow linear functions. Applying this extreme-condition model to a microwave-assistant synthesis of colloidal silver nanoparticles, for the first time, results in the determination of intrinsic kinetics parameters involving in the growth of the silver nanoparticles. The diffusion coefficient (D) of the precursor species containing Ag+ is 4.9 × 10–14 m2/s and the surface reaction rate constant (k) of the precursor species on the surface of the growing silver nanoparticles is 8.7 × 10–8 m/s in an ethylene glycol solution containing 0.15 M polyvinylpyrrolidone at 140 °C. The extreme-condition model is ready to deconvolute the intrinsic kinetics parameters of growing colloidal nanoparticles once the enlargement rate of the nanoparticles can be experimentally measured in real time and with high temporal resolution. Availability of the high-fidelity values of k and D will provide the crucial information to guide the design and synthesis of colloidal metal nanoparticles with the desirable properties.


growth kinetics of colloidal nanoparticles quantitative model extreme-condition fitting precursor diffusion surface reaction of precursor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The Startup Fund from Temple University supported this work.


  1. [1]
    Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.CrossRefGoogle Scholar
  2. [2]
    Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.CrossRefGoogle Scholar
  3. [3]
    Talapin, D. V.; Shevchenko, E. V. Introduction: Nanoparticle chemistry. Chem. Rev. 2016, 116, 10343–10345.CrossRefGoogle Scholar
  4. [4]
    Jing, L. H.; Kershaw, S. V.; Li, Y. L.; Huang, X. D.; Li, Y. Y.; Rogach, A. L.; Gao, M. Y. Aqueous based semiconductor nanocrystals. Chem. Rev. 2016, 116, 10623–10730.CrossRefGoogle Scholar
  5. [5]
    Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B. Twodimensional colloidal nanocrystals. Chem. Rev. 2016, 116, 10934–10982.CrossRefGoogle Scholar
  6. [6]
    Sugimoto, T. Preparation of monodispersed colloidal particles. Adv. Colloid Interface Sci. 1987, 28, 65–108.CrossRefGoogle Scholar
  7. [7]
    LaMer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.CrossRefGoogle Scholar
  8. [8]
    Sugimoto, T. Monodispersed Particles; Elsevier: Amsterdam, 2001.Google Scholar
  9. [9]
    Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610–7630.CrossRefGoogle Scholar
  10. [10]
    Sun, Y. G.; Ren, Y. In situ synchrotron X-ray techniques for real-time probing of colloidal nanoparticle synthesis. Part. Part. Syst. Charact. 2013, 30, 399–419.CrossRefGoogle Scholar
  11. [11]
    Hu, Q.; Zhao, L. C.; Wu, J.; Gao, K.; Luo, D. Y.; Jiang, Y. F.; Zhang, Z. Y.; Zhu, C. H.; Schaible, E.; Hexemer, A. et al. In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6]4− cage nanoparticles. Nat. Commun. 2017, 8, 15688.CrossRefGoogle Scholar
  12. [12]
    Polte, J.; Ahner, T. T.; Delissen, F.; Sokolov, S.; Emmerling, F.; Thünemann, A. F.; Kraehnert, R. Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J. Am. Chem. Soc. 2010, 132, 1296–1301.CrossRefGoogle Scholar
  13. [13]
    Kwon, S. G.; Krylova, G.; Phillips, P. J.; Klie, R. F.; Chattopadhyay, S.; Shibata, T.; Bunel, E. E.; Liu, Y. Z.; Prakapenka, V. B.; Lee, B. et al. Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures. Nat. Mater. 2015, 14, 215–223.CrossRefGoogle Scholar
  14. [14]
    Abécassis, B.; Bouet, C.; Garnero, C.; Constantin, D.; Lequeux, N.; Ithurria, S.; Dubertret, B.; Pauw, B. R.; Pontoni, D. Real-time in situ probing of high-temperature quantum dots solution synthesis. Nano Lett. 2015, 15, 2620–2626.CrossRefGoogle Scholar
  15. [15]
    Zheng, H. M.; Smith, R. K.; Jun, Y. W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309–1312.CrossRefGoogle Scholar
  16. [16]
    Yuk, J. M.; Park, J.; Ercius, P.; Kim, K.; Hellebusch, D. J.; Crommie, M. F.; Lee, J. Y.; Zettl, A.; Alivisatos, A. P. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 2012, 336, 61–64.CrossRefGoogle Scholar
  17. [17]
    De Yoreo, J. J.; Sommerdijk, N. A. J. M. Investigating materials formation with liquid-phase and cryogenic TEM. Nat. Rev. Mater. 2016, 1, 16035.CrossRefGoogle Scholar
  18. [18]
    Shen, X. C.; Zhang, C. L.; Zhang, S. Y.; Dai, S.; Zhang, G. H.; Ge, M. Y.; Pan, Y. B.; Sharkey, S. M.; Graham, G. W.; Hunt, A. et al. Deconvolution of octahedral Pt3Ni nanoparticle growth pathway from in situ characterizations. Nat. Commun. 2018, 9, 4485.CrossRefGoogle Scholar
  19. [19]
    Sun, Y. G.; Zuo, X. B.; Sankaranarayanan, S. K. R. S.; Peng, S.; Narayanan, B.; Kamath, G. Quantitative 3D evolution of colloidal nanoparticle oxidation in solution. Science 2017, 356, 303–307.CrossRefGoogle Scholar
  20. [20]
    Bullen, C. R.; Mulvaney, P. Nucleation and growth kinetics of CdSe nanocrystals in octadecene. Nano Lett. 2004, 4, 2303–2307.CrossRefGoogle Scholar
  21. [21]
    Kudera, S.; Zanella, M.; Giannini, C.; Rizzo, A.; Li, Y.; Gigli, G.; Cingolani, R.; Ciccarella, G.; Spahl, W.; Parak, W. J. et al. Sequential growth of magic-size CdSe nanocrystals. Adv. Mater. 2007, 19, 548–552.CrossRefGoogle Scholar
  22. [22]
    Park, K.; Drummy, L. F.; Wadams, R. C.; Koerner, H.; Nepal, D.; Fabris, L.; Vaia, R. A. Growth mechanism of gold nanorods. Chem. Mater. 2013, 25, 555–563.CrossRefGoogle Scholar
  23. [23]
    Larsson, E. M.; Millet, J.; Gustafsson, S.; Skoglundh, M.; Zhdanov, V. P.; Langhammer, C. Real time indirect nanoplasmonic in situ spectroscopy of catalyst nanoparticle sintering. ACS Catal. 2012, 2, 238–245.CrossRefGoogle Scholar
  24. [24]
    Liu, Y.; Huang, C. Z. Real-time dark-field scattering microscopic monitoring of the in situ growth of single Ag@Hg nanoalloys. ACS Nano 2013, 7, 11026–11034.CrossRefGoogle Scholar
  25. [25]
    Su, H. P.; Dixon, J. D.; Wang, A. Y.; Low, J.; Xu, J.; Wang, J. K. Study on growth kinetics of CdSe nanocrystals with a new model. Nanoscale Res. Lett. 2010, 5, 823–828.CrossRefGoogle Scholar
  26. [26]
    Rempel, J. Y.; Bawendi, M. G.; Jensen, K. F. Insights into the kinetics of semiconductor nanocrystal nucleation and growth. J. Am. Chem. Soc. 2009, 131, 4479–4489.CrossRefGoogle Scholar
  27. [27]
    Varghese, N.; Biswas, K.; Rao, C. N. R. Investigations of the growth kinetics of capped CdSe and CdS nanocrystals by a combined use of small angle X-ray scattering and other techniques. Chem. Asian J. 2008, 3, 1435–1442.CrossRefGoogle Scholar
  28. [28]
    Talapin, D. V.; Rogach, A. L.; Haase, M.; Weller, H. Evolution of an ensemble of nanoparticles in a colloidal solution: Theoretical study. J. Phys. Chem. B 2001, 105, 12278–12285.CrossRefGoogle Scholar
  29. [29]
    Liu, Q.; Gao, M. R.; Liu, Y. Z.; Okasinski, J. S.; Ren, Y.; Sun, Y. G. Quantifying the nucleation and growth kinetics of microwave nanochemistry enabled by in situ high-energy x-ray scattering. Nano Lett. 2016, 16, 715–720.CrossRefGoogle Scholar
  30. [30]
    Peng, S.; Okasinski, J. S.; Almer, J. D.; Ren, Y.; Wang, L.; Yang, W. G.; Sun, Y. G. Real-time probing of the synthesis of colloidal silver nanocubes with time-resolved high-energy synchrotron X-ray diffraction. J. Phys. Chem. C 2012, 116, 11842–11847.CrossRefGoogle Scholar
  31. [31]
    La Mer, V. K. Nucleation in phase transitions. Ind. Eng. Chem. 1952, 44, 1270–1277.CrossRefGoogle Scholar
  32. [32]
    Ostwald, W. Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper. Z. Phys. Chem. 1900, 34, 495–503.Google Scholar
  33. [33]
    Lifshitz, I. M.; Slyozov, V. V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 1961, 19, 35–50.CrossRefGoogle Scholar
  34. [34]
    Wagner, C. Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Z. Elektrochem 1961, 65, 581–591.Google Scholar
  35. [35]
    Watzky, M. A.; Finke, R. G. Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: Slow, continuous nucleation and fast autocatalytic surface growth. J. Am. Chem. Soc. 1997, 119, 10382–10400.Google Scholar
  36. [36]
    Biskup, M.; Chayes, L.; Kotecký, R. A proof of the Gibbs—Thomson formula in the droplet formation regime. J. Stat. Phys. 2004, 116, 175–203.CrossRefGoogle Scholar
  37. [37]
    Borchert, H.; Shevchenko, E. V.; Robert, A.; Mekis, I.; Kornowski, A.; Grübel, G.; Weller, H. Determination of nanocrystal sizes: A comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles. Langmuir 2005, 21, 1931–1936.CrossRefGoogle Scholar
  38. [38]
    Pabisch, S.; Feichtenschlager, B.; Kickelbick, G.; Peterlik, H. Effect of interparticle interactions on size determination of zirconia and silica based systems—A comparison of SAXS, DLS, BET, XRD and TEM. Chem. Phys. Lett. 2012, 521, 91–97.CrossRefGoogle Scholar
  39. [39]
    Sun, Y. G. Watching nanoparticle kinetics in liquid. Mater. Today 2012, 15, 140–147.CrossRefGoogle Scholar
  40. [40]
    Özkar, S.; Finke, R. G. Silver nanoparticles synthesized by microwave heating: A kinetic and mechanistic re-analysis and re-interpretation. J. Phys. Chem. C 2017, 121, 27643–27654.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryTemple UniversityPhiladelphiaUSA

Personalised recommendations