Advertisement

Nano Research

, Volume 12, Issue 4, pp 823–827 | Cite as

Influence of seeding promoters on the properties of CVD grown monolayer molybdenum disulfide

  • Peng Yang
  • Ai-Guo Yang
  • Lingxiu Chen
  • Jing Chen
  • Youwei Zhang
  • Haomin Wang
  • Laigui Hu
  • Rong-Jun Zhang
  • Ran Liu
  • Xin-Ping QuEmail author
  • Zhi-Jun QiuEmail author
  • Chunxiao CongEmail author
Research Article
  • 74 Downloads

Abstract

Chemical vapor deposition (CVD) is the most efficient method to grow large-area two dimensional (2D) transition metal dichiacogenides (TMDCs) in high quality. Monolayer molybdenum disulfide (MoS2) and seed-assistant are the mostly selected 2D TMDC and growth strategy for such CVD processes, respectively. Though the advantages of seed catalysts in facilitating the nucleation, achieving higher yield and better repeatability, as well as their effects on the morphologies of as-grown MoS2 have been studied, the influence of seeding promoters on both optical and electrical properties of as-grown monolayer MoS2 is not known comprehensively, which is indeed critical for understanding fundamental physics and developing practical application of such emerging 2D semiconductors. In this report, we systematically investigated the effect of different seeding promoters on the properties of CVD-grown monolayer MoS2. It is found that different seed molecules lead to different impacts on the optical and electrical properties of as-grown monolayer MoS2. Among three different seed catalysts (perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt (PTAS), copper phthalocyanine (CuPc), and crystal violet (CV)), PTAS performs better in obtaining large area monolayer MoS2 with good optical quality and high electrical mobility than the other two. Our work gives a guide for modifying the properties of as-grown monolayer MoS2 and other 2D transition metal dichalcogenides in seeding promoters-assisted synthesis process.

Keywords

transition metal dichalcogenides monolayer MoS2 seeding promoters chemical vapor deposition optical and electrical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 61774040, 61774042, and 51772317), the National Young 1000 Talent Plan of China, the Shanghai Municipal Natural Science Foundation (Nos. 16ZR1402500, 16ZR1442700, and 17ZR1446500), the Opening project of State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, the National Key R&D program (No. 2017YFF0206106).

Supplementary material

12274_2019_2294_MOESM1_ESM.pdf (1.6 mb)
Influence of seeding promoters on the properties of CVD grown monolayer molybdenum disulfide

References

  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2014, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.CrossRefGoogle Scholar
  3. [3]
    Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.CrossRefGoogle Scholar
  4. [4]
    Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.CrossRefGoogle Scholar
  5. [5]
    Cong, C. X.; Shang, J. Z.; Wang, Y. L.; Yu, T. Optical properties of 2D semiconductor WS2. Adv. Opt. Mater. 2018, 6, 1700767.CrossRefGoogle Scholar
  6. [6]
    Wu, J. B.; Lin, M. L.; Cong, X.; Liu, H. N.; Tan, P. H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873.CrossRefGoogle Scholar
  7. [7]
    Shang, J. Z.; Cong, C. X.; Wang, Z. L; Peimyoo, N.; Wu, L. S.; Zou, C. J.; Chen, Y.; Chin, X. Y.; Wang, J. P.; Soci, C.; Huang, W.; Yu, T. Roomtemperature 2D semiconductor activated vertical-cavity surface-emitting lasers. Nat. Commun. 2017, 8, 543.CrossRefGoogle Scholar
  8. [8]
    Xu, W. G.; Liu, W. W.; Schmidt, J. F.; Zhao, W. J.; Lu, X.; Raab, T.; Diederichs, C.; Gao, W. B.; Seletskiy, D. V.; Xiong, Q. H. Correlated fluorescence blinking in two-dimensional semiconductor heterostructures. Nature 2016, 541, 62–67.CrossRefGoogle Scholar
  9. [9]
    Shang, J. Z.; Cong, C. X.; Wu, L. S.; Huang, W.; Yu, T. Light sources and photodetectors enabled by 2D semiconductors. Small Methods 2018, 2, 1800019.CrossRefGoogle Scholar
  10. [10]
    Peng, B.; Ang, P. K.; Loh, K. P. Two-dimensional dichalcogenides for light-harvesting applications. Nanotoday 2015, 10, 128–137.CrossRefGoogle Scholar
  11. [11]
    Hu, Z. H.; Wu, Z. T.; Han, C.; He, J.; Ni, Z. H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128.CrossRefGoogle Scholar
  12. [12]
    Zeng, H. L.; Cui, X. D. An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2629–2642.CrossRefGoogle Scholar
  13. [13]
    Scalise, E.; Houssa, M.; Pourtois, G.; Afanas’ev, V.; Stesmans, A. Straininduced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 2012, 5, 43–48.CrossRefGoogle Scholar
  14. [14]
    Cong, C. X.; Zou, C. J.; Cao, B. C.; Wu, L. S.; Shang, J. Z.; Wang, H. M.; Qiu, Z. J.; Hu, L. G.; Tian, P. F.; Liu, R. et al. Intrinsic excitonic emission and valley Zeeman splitting in epitaxial MS2 (M = Mo and W) monolayers on hexagonal boron nitride. Nano Res. 2018, 11, 6227–6236.CrossRefGoogle Scholar
  15. [15]
    Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.CrossRefGoogle Scholar
  16. [16]
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.CrossRefGoogle Scholar
  17. [17]
    Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed. 2011, 50, 11093–11097.CrossRefGoogle Scholar
  18. [18]
    Kang, K.; Xie, S.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.CrossRefGoogle Scholar
  19. [19]
    Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.CrossRefGoogle Scholar
  20. [20]
    Lee, J.; Pak, S.; Giraud, P.; Lee, Y. W.; Cho, Y.; Hong, J.; Jang, A. R.; Chung, H. S.; Hong, W. K.; Jeong, H. Y. et al. Thermodynamically stable synthesis of large-scale and highly crystalline transition metal dichalcogenide monolayers and their unipolar n–n heterojunction devices. Adv. Mater. 2017, 29, 1702206.CrossRefGoogle Scholar
  21. [21]
    Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.CrossRefGoogle Scholar
  22. [22]
    Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759.CrossRefGoogle Scholar
  23. [23]
    van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.CrossRefGoogle Scholar
  24. [24]
    Cong, C. X.; Shang, J. Z.; Wu, X.; Cao, B. C.; Peimyoo, N.; Qiu, C. Y.; Sun, L. T.; Yu, T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2014, 2, 131–136.CrossRefGoogle Scholar
  25. [25]
    Ling, X.; Lee, Y. H.; Lin, Y. X.; Fang, W. J.; Yu, L. L.; Dresselhaus, M. S.; Kong, J. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett. 2014, 14, 464–472.CrossRefGoogle Scholar
  26. [26]
    Yang, S. Y.; Shim, G. W.; Seo, S. B.; Choi, S. Y. Effective shape-controlled growth of monolayer MoS2 flakes by powder-based chemical vapor deposition. Nano Res. 2017, 10, 255–262.CrossRefGoogle Scholar
  27. [27]
    Kim, I. S.; Sangwan, V. K.; Jariwala, D.; Wood, J. D.; Park, S.; Chen, K. S.; Shi, F. Y.; Ruiz-Zepeda, F.; Ponce, A.; Jose-Yacaman, M. et al. Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2. ACS Nano 2014, 8, 10551–10558.CrossRefGoogle Scholar
  28. [28]
    Senthilkumar, V.; Tam, L. C.; Kim, Y. S.; Sim, Y. M.; Seong, M. J.; Jang, J. I. Direct vapor phase growth process and robust photoluminescence properties of large area MoS2 layers. Nano Res. 2014, 7, 1759–1768.CrossRefGoogle Scholar
  29. [29]
    Wu, K.; Li, Z.; Tang, J. B.; Lv, X. L.; Wang, H. L.; Luo, R. C.; Liu, P.; Qian, L. H.; Zhang, S. P.; Yuan, S. L. Controllable defects implantation in MoS2 grown by chemical vapor deposition for photoluminescence enhancement. Nano Res. 2018, 11, 4123–4132.CrossRefGoogle Scholar
  30. [30]
    Li, Y. Z.; Li, X. S.; Chen, H. Y.; Shi, J.; Shang, Q. Y.; Zhang, S.; Qiu, X. H.; Liu, Z.; Zhang, Q.; Xu, H. Y. et al. Controlled gas molecules doping of monolayer MoS2 via atomic-layer-deposited Al2O3 films. ACS Appl. Mater. Interfaces 2017, 9, 27402–27408.CrossRefGoogle Scholar
  31. [31]
    Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound Trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.CrossRefGoogle Scholar
  32. [32]
    Nan, H. Y.; Wang, Z. L.; Wang, W. H.; Liang, Z.; Lu, Y.; Chen, Q.; He, D. W.; Tan, P. H.; Miao, F.; Wang, X. R. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014, 8, 5738–5745.CrossRefGoogle Scholar
  33. [33]
    Roy, S.; Choi, W.; Jeon, S.; Kim, D. H.; Kim, H.; Yun, S. J.; Lee, Y.; Lee, J.; Kim, Y. M.; Kim, J. Atomic observation of filling vacancies in monolayer transition metal sulfides by chemically sourced sulfur atoms. Nano Lett. 2018, 18, 4523–4530.CrossRefGoogle Scholar
  34. [34]
    Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2016, 6, 5635–5641.CrossRefGoogle Scholar
  35. [35]
    Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80.CrossRefGoogle Scholar
  36. [36]
    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Singlelayer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.CrossRefGoogle Scholar
  37. [37]
    Zhao, M.; Ye, Y.; Han, Y. M.; Xia, Y.; Zhu, H. Y.; Wang, S. Q.; Wang, Y.; Muller, D. A.; Zhang, X. Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotechnol. 2016, 11, 954–959.CrossRefGoogle Scholar
  38. [38]
    Yu, Z. H.; Pan, Y. M.; Shen, Y. T.; Wang, Z. L.; Ong, Z. Y.; Xu, T.; Xin, R.; Pan, L. J.; Wang, B. G.; Sun, L. T. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 2014, 5, 5290.CrossRefGoogle Scholar
  39. [39]
    Amani, M.; Lien, D. H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S. R.; Addou, R.; KC, S.; Dubey, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 2015, 350, 1065–1068.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Peng Yang
    • 1
  • Ai-Guo Yang
    • 1
  • Lingxiu Chen
    • 2
  • Jing Chen
    • 1
  • Youwei Zhang
    • 1
  • Haomin Wang
    • 2
  • Laigui Hu
    • 1
  • Rong-Jun Zhang
    • 1
  • Ran Liu
    • 1
  • Xin-Ping Qu
    • 1
    Email author
  • Zhi-Jun Qiu
    • 1
    Email author
  • Chunxiao Cong
    • 1
    Email author
  1. 1.State Key Laboratory of ASIC and System, School of Information Science and TechnologyFudan UniversityShanghaiChina
  2. 2.State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiChina

Personalised recommendations