Advertisement

Quantum-confined ion superfluid in nerve signal transmission

  • Xiqi Zhang
  • Lei JiangEmail author
Research Article

Abstract

We propose a process of quantum-confined ion superfluid (QISF), which is enthalpy-driven confined ordered fluid, to explain the transmission of nerve signals. The ultrafast Na+ and K+ ions transportation through all sodium-potassium pump nanochannels simultaneously in the membrane is without energy loss, and leads to QISF wave along the neuronal axon, which acts as an information medium in the ultrafast nerve signal transmission. The QISF process will not only provide a new view point for a reasonable explanation of ultrafast signal transmission in the nerves and brain, but also challenge the theory of matter wave for ions, molecules and particles
.

Keywords

nerve signal transmission quantum-confined ion superfluid action potential ion channels matter wave 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51603211 and 51673107), the National Key R&D program of China (No. 2016YFA0200803), and the 111 Project (No. B14009).

References

  1. [1]
    Hodgkin, A. L.; Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500–544.CrossRefGoogle Scholar
  2. [2]
    Andersen, S. S. L.; Jackson, A. D.; Heimburg, T. Towards a thermodynamic theory of nerve pulse propagation. Prog. Neurobiol. 2009, 88, 104–113.CrossRefGoogle Scholar
  3. [3]
    Barnett, M. W.; Larkman, P. M. The action potential. Pract. Neurol. 2007, 7, 192–197.Google Scholar
  4. [4]
    Majumder, M.; Chopra, N.; Andrews, R.; Hinds, B. J. Enhanced flow in carbon nanotubes. Nature 2005, 438, 44.CrossRefGoogle Scholar
  5. [5]
    Sansom, M. S. P.; Shrivastava, I. H.; Bright, J. N.; Tate, J.; Capener, C. E.; Biggin, P. C. Potassium channels: Structures, models, simulations. Biochim. Biophys. Acta 2002, 1565, 294–307.CrossRefGoogle Scholar
  6. [6]
    Chen, S. Y.; Tang, Y. L.; Zhan, K.; Sun, D. H.; Hou, X. Chemiresistive nanosensors with convex/concave structures. Nano Today 2018, 20, 84–100.CrossRefGoogle Scholar
  7. [7]
    Zhu, Y. L.; Zhan, K.; Hou, X. Interface design of nanochannels for energy utilization. ACS Nano 2018, 12, 908–911.CrossRefGoogle Scholar
  8. [8]
    Hou, X. Smart gating multi-scale pore/channel-based membranes. Adv. Mater. 2016, 28, 7049–7064.CrossRefGoogle Scholar
  9. [9]
    Doyle, D. A.; Cabral, J. M.; Pfuetzner, R. A.; Kuo, A. L.; Gulbis, J. M.; Cohen, S. L.; Chait, B. T.; MacKinnon, R. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 1998, 280, 69–77.CrossRefGoogle Scholar
  10. [10]
    MacKinnon, R. Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture). Angew. Chem., Int. Ed. 2004, 43, 4265–4277.CrossRefGoogle Scholar
  11. [11]
    Shi, C. W.; He, Y.; Hendriks, K.; de Groot, B. L.; Cai, X. Y.; Tian, C. L.; Lange, A.; Sun, H. A single NaK channel conformation is not enough for non-selective ion conduction. Nat. Commun. 2018, 9, 717.CrossRefGoogle Scholar
  12. [12]
    Tadross, M. R.; Dick, I. E.; Yue, D. T. Mechanism of local and global Ca2+ sensing by calmodulin in complex with a Ca2+ channel. Cell 2008, 133, 1228–1240.CrossRefGoogle Scholar
  13. [13]
    Wen, L. P.; Zhang, X. Q.; Tian, Y.; Jiang, L. Quantum-confined superfluid: From nature to artificial. Sci. China Mater. 2018, 61, 1027–1032.CrossRefGoogle Scholar
  14. [14]
    Zhang, X. Q.; Liu, H. L.; Jiang, L. Wettability and applications of nanochannels. Adv. Mater., in press, DOI: 10.1002/adma.201804508.Google Scholar
  15. [15]
    Zhao, B. S.; Meijer, G.; Schöllkopf, W. Quantum reflection of He2 several nanometers above a grating surface. Science 2011, 331, 892–894.CrossRefGoogle Scholar
  16. [16]
    Juffmann, T.; Milic, A.; Müllneritsch, M.; Asenbaum, P.; Tsukernik, A.; Tüxen, J.; Mayor, M.; Cheshnovsky, O.; Arndt, M. Real-time single-molecule imaging of quantum interference. Nat. Nanotechnol. 2012, 7, 297–300.CrossRefGoogle Scholar
  17. [17]
    Hackermüller, L.; Uttenthaler, S.; Hornberger, K.; Reiger, E.; Brezger, B.; Zeilinger, A.; Arndt, M. Wave nature of biomolecules and fluorofullerenes. Phys. Rev. Lett. 2003, 91, 090408.CrossRefGoogle Scholar
  18. [18]
    Arndt, M.; Nairz, O.; Vos-Andreae, J.; Keller, C.; van der Zouw, G.; Zeilinger, A. Wave–particle duality of C60 molecules. Nature 1999, 401, 680–682.CrossRefGoogle Scholar
  19. [19]
    Brezger, B.; Hackermüller, L.; Uttenthaler, S.; Petschinka, J.; Arndt, M.; Zeilinger, A. Matter-wave interferometer for large molecules. Phys. Rev. Lett. 2002, 88, 100404.CrossRefGoogle Scholar
  20. [20]
    Gerlich, S.; Eibenberger, S.; Tomandl, M.; Nimmrichter, S.; Hornberger, K.; Fagan, P. J.; Tüxen, J.; Mayor, M.; Arndt, M. Quantum interference of large organic molecules. Nat. Commun. 2011, 2, 263.CrossRefGoogle Scholar
  21. [21]
    Eibenberger, S.; Gerlich, S.; Arndt, M.; Mayor, M.; Tüxen, J. Matter–wave interference of particles selected from a molecular library with masses exceeding 10,000 amu. Phys. Chem. Chem. Phys. 2013, 15, 14696–14700.CrossRefGoogle Scholar
  22. [22]
    Summhammer, J.; Sulyok, G.; Bernroider, G. Quantum dynamics and non-local effects behind ion transition states during permeation in membrane channel proteins. Entropy 2018, 20, 558.CrossRefGoogle Scholar
  23. [23]
    Salari, V.; Moradi, N.; Sajadi, M.; Fazileh, F.; Shahbazi, F. Quantum decoherence time scales for ionic superposition states in ion channels. Phys. Rev. E 2015, 91, 032704.CrossRefGoogle Scholar
  24. [24]
    Hille, B. The permeability of the sodium channel to metal cations in myelinated nerve. J. Gen. Physiol. 1972, 59, 637–658.CrossRefGoogle Scholar
  25. [25]
    Sun, Y. M.; Favre, I.; Schild, L.; Moczydlowski, E. On the structural basis for size-selective permeation of organic cations through the voltage-gated sodium channel. J. Gen. Physiol. 1997, 110, 693–715.CrossRefGoogle Scholar
  26. [26]
    Zhou, Y. F.; Morais-Cabral, J. H.; Kaufman, A.; MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel–fab complex at 2.0 Å resolution. Nature 2001, 414, 43–48.CrossRefGoogle Scholar
  27. [27]
    Lynch, J. W. Molecular structure and function of the glycine receptor chloride channel. Physiol. Rev. 2004, 84, 1051–1095.CrossRefGoogle Scholar
  28. [28]
    Linsdell, P.; Tabcharani, J. A.; Rommens, J. M.; Hou, Y. X.; Chang, X. B.; Tsui, L. C.; Riordan, J. R.; Hanrahan, J. W. Permeability of wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels to polyatomic anions. J. Gen. Physiol. 1997, 110, 355–364.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Bio-inspired Materials and Interfacial ScienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of Chemistry, Beihang UniversityBeijingChina

Personalised recommendations