Advertisement

Nano Research

, Volume 12, Issue 4, pp 741–747 | Cite as

Color-coded perfluorocarbon nanodroplets for multiplexed ultrasound and photoacoustic imaging

  • Daniela Y. Santiesteban
  • Kristina A. Hallam
  • Steven K. Yarmoska
  • Stanislav Y. EmelianovEmail author
Research Article

Abstract

Laser-activated perfluorocarbon nanodroplets are an emerging class of phase-change, dual-contrast agents that can be utilized in ultrasound and photoacoustic imaging. Through the ability to differentiate subpopulations of nanodroplets via laser activation at different wavelengths of near-infrared light, optically-triggered color-coded perfluorocarbon nanodroplets present themselves as an attractive tool for multiplexed ultrasound and photoacoustic imaging. In particular, laser-activated droplets can be used to provide quantitative spatiotemporal information regarding distinct biological targets, allowing for their potential use in a wide range of diagnostic and therapeutic applications. In the work presented, laser-activated color-coded perfluorocarbon nanodroplets are synthesized to selectively respond to laser irradiation at corresponding wavelengths. The dynamic ultrasound and photoacoustic signals produced by laser-activated perfluorocarbon nanodroplets are evaluated in situ prior to implementation in a murine model. In vivo, these particles are used to distinguish unique particle trafficking mechanisms and are shown to provide ultrasound and photoacoustic contrast for up to 72 hours within lymphatics. Overall, the conducted studies show that laser-activated color-coded perfluorocarbon nanodroplets are a promising agent for multiplexed ultrasound and photoacoustic imaging.

Keywords

multiplexed imaging perfluorocarbon nanodroplets photoacoustic imaging ultrasound imaging molecular targets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank Diego Dumani of the Georgia Institute of Technology for his insight into background free image processing algorithm development. D. Y. S. acknowledges fellowship funding from the National Institutes of Health (No. T32 EB007507) and the National Science Foundation Graduate Research Fellowship Program. K. A. H. acknowledges fellowship funding from the National Institutes of Health (No. T32 EB007507). S. K. Y. acknowledges fellowship funding from the National Institutes of Health (No. F30 CA216939). The work was supported in part by the National Institutes of Health under Grants CA158598, EB008101 and CA149740 as well as the Breast Cancer Research Foundation Grant (No. BCRF-17-043). We also wish to acknowledge the core facilities at the Parker H. Petit Institute for Bioengineering and Bioscience at the Georgia Institute of Technology for the use of their shared equipment, services, and expertise.

Supplementary material

12274_2019_2279_MOESM1_ESM.pdf (1.2 mb)
Color-coded perfluorocarbon nanodroplets for multiplexed ultrasound and photoacoustic imaging

References

  1. [1]
    Bauer, K. R.; Brown, M.; Cress, R. D.; Parise, C. A.; Caggiano, V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triplenegative phenotype. Cancer 2007, 109, 1721–1728.CrossRefGoogle Scholar
  2. [2]
    Osborne, C. K.; Yochmowitz, M. G.; Knight, W. A.; McGuire, W. L. The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer 1980, 46, 2884–2888.CrossRefGoogle Scholar
  3. [3]
    La Thangue, N. B.; Kerr, D. J. Predictive biomarkers: A paradigm shift towards personalized cancer medicine. Nat. Rev. Clin. Oncol. 2011, 8, 587–596.CrossRefGoogle Scholar
  4. [4]
    Heinzmann, K.; Carter, L. M.; Lewis, J. S.; Aboagye, E. O. Multiplexed imaging for diagnosis and therapy. Nat. Biomed. Eng. 2017, 1, 697–713.CrossRefGoogle Scholar
  5. [5]
    Vendrell, M.; Maiti, K. K.; Dhaliwal, K.; Chang, Y. T. Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol. 2013, 31, 249–257.CrossRefGoogle Scholar
  6. [6]
    Ueda, S.; Saeki, T.; Osaki, A.; Yamane, T.; Kuji, I. Bevacizumab induces acute hypoxia and cancer progression in patients with refractory breast cancer: Multimodal functional imaging and multiplex cytokine analysis. Clin. Cancer Res. 2017, 23, 5769–5778.CrossRefGoogle Scholar
  7. [7]
    James, M. L.; Gambhir, S. S. A molecular imaging primer: Modalities, imaging agents, and applications. Physiol. Rev. 2012, 92, 897–965.CrossRefGoogle Scholar
  8. [8]
    Wilson, K.; Homan, K.; Emelianov, S. Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrastenhanced imaging. Nat. Commun. 2012, 3, 618.CrossRefGoogle Scholar
  9. [9]
    Rapoport, N. Drug-loaded perfluorocarbon nanodroplets for ultrasoundmediated drug delivery. In Therapeutic Ultrasound. Escoffre, J. M.; Bouakaz, A., Eds.; Springer: Cham, 2016; pp 221–241.CrossRefGoogle Scholar
  10. [10]
    Hannah, A. S.; Luke, G. P.; Emelianov, S. Y. Blinking phase-change nanocapsules enable background-free ultrasound imaging. Theranostics 2016, 6, 1866–1876.CrossRefGoogle Scholar
  11. [11]
    Luke, G. P.; Hannah, A. S.; Emelianov, S. Y. Super-resolution ultrasound imaging in vivo with transient laser-activated nanodroplets. Nano Lett. 2016, 16, 2556–2559.CrossRefGoogle Scholar
  12. [12]
    Santiesteban, D. Y.; Dumani, D. S.; Profili, D.; Emelianov, S. Y. Copper sulfide perfluorocarbon nanodroplets as clinically relevant photoacoustic/ ultrasound imaging agents. Nano Lett. 2017, 17, 5984–5989.CrossRefGoogle Scholar
  13. [13]
    Sheeran, P. S.; Luois, S.; Dayton, P. A.; Matsunaga, T. O. Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound. Langmuir 2011, 27, 10412–10420.CrossRefGoogle Scholar
  14. [14]
    Rapoport, N.; Nam, K. H.; Gupta, R.; Gao, Z. G.; Mohan, P.; Payne, A.; Todd, N.; Liu, X.; Kim, T.; Shea, J. et al. Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J. Control. Release 2011, 153, 4–15.CrossRefGoogle Scholar
  15. [15]
    Ji, G. J.; Yang, J. H.; Chen, J. H. Preparation of novel curcumin-loaded multifunctional nanodroplets for combining ultrasonic development and targeted chemotherapy. Int. J. Pharm. 2014, 466, 314–320.CrossRefGoogle Scholar
  16. [16]
    Kumar, S.; Aaron, J.; Sokolov, K. Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat. Protoc. 2008, 3, 314.CrossRefGoogle Scholar
  17. [17]
    Hannah, A.; Luke, G.; Wilson, K.; Homan, K.; Emelianov, S. Indocyanine green-loaded photoacoustic nanodroplets: Dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging. ACS Nano 2013, 8, 250–259.CrossRefGoogle Scholar
  18. [18]
    Gambhir, S. S. Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer 2002, 2, 683–693.CrossRefGoogle Scholar
  19. [19]
    Coates, A. S.; Winer, E. P.; Goldhirsch, A.; Gelber, R. D.; Gnant, M.; Piccart-Gebhart, M.; Thürlimann, B.; Senn, H. J.; Members, P.; André, F. et al. Tailoring therapies—Improving the management of early breast cancer: St gallen international expert consensus on the primary therapy of early breast cancer 2015. Ann. Oncol. 2015, 26, 1533–1546.CrossRefGoogle Scholar
  20. [20]
    Chollet, P.; Amat, S.; Cure, H.; de Latour, M.; Le Bouedec, G.; Mouret-Reynier, M. A.; Ferriere, J. P.; Achard, J. L.; Dauplat, J.; Penault-Llorca, F. et al. Prognostic significance of a complete pathological response after induction chemotherapy in operable breast cancer. Br. J. Cancer 2002, 86, 1041–1046.CrossRefGoogle Scholar
  21. [21]
    Moghimi, S. M.; Hunter, A. C.; Andresen, T. L. Factors controlling nanoparticle pharmacokinetics: An integrated analysis and perspective. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 481–503.CrossRefGoogle Scholar
  22. [22]
    Li, D. S.; Yoon, S. J.; Pelivanov, I.; Frenz, M.; O’Donnell, M.; Pozzo, L. D. Polypyrrole-coated perfluorocarbon nanoemulsions as a sono-photoacoustic contrast agent. Nano Lett. 2017, 17, 6184–6194.CrossRefGoogle Scholar
  23. [23]
    Yoon, H.; Yarmoska, S. K.; Hannah, A. S.; Yoon, C.; Hallam, K. A.; Emelianov, S. Y. Contrast-enhanced ultrasound imaging in vivo with laseractivated nanodroplets. Med. Phys. 2017, 44, 3444–3449.CrossRefGoogle Scholar
  24. [24]
    Marshalek, J. P.; Sheeran, P. S.; Ingram, P.; Dayton, P. A.; Witte, R. S.; Matsunaga, T. O. Intracellular delivery and ultrasonic activation of folate receptor-targeted phase-change contrast agents in breast cancer cells in vitro. J. Control. Release 2016, 243, 69–77.CrossRefGoogle Scholar
  25. [25]
    Song, X. J.; Feng, L. Z.; Liang, C.; Yang, K.; Liu, Z. Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies. Nano Lett. 2016, 16, 6145–6153.CrossRefGoogle Scholar
  26. [26]
    Song, G. S.; Ji, C. H.; Liang, C.; Song, X. J.; Yi, X.; Dong, Z. L.; Yang, K.; Liu, Z. TaOX decorated perfluorocarbon nanodroplets as oxygen reservoirs to overcome tumor hypoxia and enhance cancer radiotherapy. Biomaterials 2017, 112, 257–263.CrossRefGoogle Scholar
  27. [27]
    Albertini, J. J.; Lyman, G. H.; Cox, C.; Yeatman, T.; Balducci, L.; Ku, N. N.; Shivers, S.; Berman, C.; Wells, K.; Rapaport, D. et al. Lymphatic mapping and sentinel node biopsy in the patient with breast cancer. JAMA 1996, 276, 1818–1822.CrossRefGoogle Scholar
  28. [28]
    Krag, D. N.; Weaver, D. L.; Alex, J. C.; Fairbank, J. T. Surgical resection and radiolocalization of the sentinel lymph node in breast cancer using a gamma probe. Surg. Oncol. 1993, 2, 335–340.CrossRefGoogle Scholar
  29. [29]
    Thomas, S. N.; Vokali, E.; Lund, A. W.; Hubbell, J. A.; Swartz, M. A. Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials 2014, 35, 814–824.CrossRefGoogle Scholar
  30. [30]
    Leleux, J.; Atalis, A.; Roy, K. Engineering immunity: Modulating dendritic cell subsets and lymph node response to direct immune-polarization and vaccine efficacy. J. Control. Release 2015, 219, 610–621.CrossRefGoogle Scholar
  31. [31]
    Kowala, M. C.; Schoefl, G. I. The popliteal lymph node of the mouse: Internal architecture, vascular distribution and lymphatic supply. J. Anat. 1986, 148, 25–46.Google Scholar
  32. [32]
    Rohner, N. A.; Thomas, S. N. Flexible macromolecule versus rigid particle retention in the injected skin and accumulation in draining lymph nodes are differentially influenced by hydrodynamic size. ACS Biomater. Sci. Eng. 2017, 3, 153–159.CrossRefGoogle Scholar
  33. [33]
    Manolova, V.; Flace, A.; Bauer, M.; Schwarz, K.; Saudan, P.; Bachmann, M. F. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 2008, 38, 1404–1413.CrossRefGoogle Scholar
  34. [34]
    Reddy, S. T.; Rehor, A.; Schmoekel, H. G.; Hubbell, J. A.; Swartz, M. A. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J. Control. Release 2006, 112, 26–34.CrossRefGoogle Scholar
  35. [35]
    Kushwah, R.; Hu, J. Complexity of dendritic cell subsets and their function in the host immune system. Immunology 2011, 133, 409–419.CrossRefGoogle Scholar
  36. [36]
    Liang, R. J.; Xie, J.; Li, J.; Wang, K.; Liu, L. P.; Gao, Y. J.; Hussain, M.; Shen, G. X.; Zhu, J. T.; Tao, J. Liposomes-coated gold nanocages with antigens and adjuvants targeted delivery to dendritic cells for enhancing antitumor immune response. Biomaterials 2017, 149, 41–50.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Daniela Y. Santiesteban
    • 1
  • Kristina A. Hallam
    • 1
    • 2
  • Steven K. Yarmoska
    • 1
  • Stanislav Y. Emelianov
    • 1
    • 2
    Email author
  1. 1.Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaUSA
  2. 2.School of Electrical & Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations