Microscopic insight into the single step growth of in-plane heterostructures between graphene and hexagonal boron nitride

  • Thanh Hai Nguyen
  • Daniele Perilli
  • Mattia Cattelan
  • Hongsheng Liu
  • Francesco Sedona
  • Neil A. Fox
  • Cristiana Di Valentin
  • Stefano AgnoliEmail author
Research Article


Graphene-h-BN hybrid nanostructures are grown in one step on the Pt(111) surface by ultra-high vacuum chemical vapor deposition using a single precursor, the dimethylamino borane complex. By varying the deposition conditions, different nanostructures ranging from a fully continuous hybrid monolayer to well-separated Janus nanodots can be obtained. The growth starts with heterogeneous nucleation on morphological defects such as Pt step edges and proceeds by the addition of small clusters formed by the decomposition of the dimethylamino borane complex. Scanning tunneling microscopy measurements indicate that a sharp zigzag in-plane boundary is formed when graphene grows aligned with the Pt substrate and consequently with the h-BN layer as well. When graphene is rotated by 30°, the graphene armchair edges are seamlessly connected to h-BN zigzag edges. This is confirmed by a thorough density functional theory (DFT) study. Angle resolved photoemission spectroscopy (ARPES) data suggests that both h-BN and graphene present the typical electronic structure of self-standing non-interacting materials.


graphene h-BN heterostructures scanning tunneling microscopy density functional theory (DFT) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was partially supported by the Italian MIUR through the national grant Futuro in Ricerca 2012 RBFR128BEC “Beyond graphene: tailored C-layers for novel catalytic materials and green chemistry”. Authors acknowledge access to the Bristol NanoESCA Facility (EPSRC Strategic Equipment Grant EP/K035746/1 and EP/M000605/1).

Supplementary material

12274_2019_2276_MOESM1_ESM.pdf (3.9 mb)
Microscopic insight into the single step growth of in-plane heterostructures between graphene and hexagonal boron nitride


  1. [1]
    Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.CrossRefGoogle Scholar
  2. [2]
    Jariwala, D.; Marks, T. J.; Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170–181.CrossRefGoogle Scholar
  3. [3]
    Das, S.; Robinson, J. A.; Dubey, M.; Terrones, H.; Terrones, M. Beyond graphene: Progress in novel two-dimensional materials and van Der Waals solids. Annu. Rev. Mater. Res. 2015, 45, 1–27.CrossRefGoogle Scholar
  4. [4]
    Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.CrossRefGoogle Scholar
  5. [5]
    Duong, D. L.; Yun, S. J.; Lee, Y. H. van der Waals layered materials: Opportunities and challenges. CS Nano 2017, 11, 11803–11830.Google Scholar
  6. [6]
    Lee, J. Y.; Shin, J.-H.; Lee, G.-H.; Lee, C.-H. Two-dimensional semiconductor optoelectronics based on van der Waals heterostructures. Nanomaterials 2016, 6, 193.CrossRefGoogle Scholar
  7. [7]
    Geim, A. K.; Grigorieva, I. V. van der Waals heterostructures. Nature 2013, 499, 419–425.CrossRefGoogle Scholar
  8. [8]
    Cattelan, M.; Markman, B.; Lucchini, G.; Das, P. K.; Vobornik, I.; Robinson, J. A.; Agnoli, S.; Granozzi, G. New strategy for the growth of complex heterostructures based on different 2D materials. Chem. Mater. 2015, 27, 4105–4113.CrossRefGoogle Scholar
  9. [9]
    Solís-Fernández, P.; Bissett, M.; Ago, H. Synthesis, structure and applications of graphene-based 2D heterostructures. Chem. Soc. Rev. 2017, 46, 4572–4613.CrossRefGoogle Scholar
  10. [10]
    Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.CrossRefGoogle Scholar
  11. [11]
    Zhang, J. F.; Xie, W. Y.; Zhao, J. J.; Zhang, S. B. Band alignment of twodimensional lateral heterostructures. 2D Mater. 2017, 4, 015038.CrossRefGoogle Scholar
  12. [12]
    Drost, R.; Uppstu, A.; Schulz, F.; Hämäläinen, S. K.; Ervasti, M.; Harju, A.; Liljeroth, P. Electronic states at the graphene-hexagonal boron nitride zigzag interface. Nano Lett. 2014, 14, 5128–5132.CrossRefGoogle Scholar
  13. [13]
    Sun, Q. L.; Dai, Y.; Ma, Y. D.; Wei, W.; Huang, B. B. Lateral heterojunctions within monolayer H-BN/graphene: A first-principles study. RSC Adv. 2015, 5, 33037–33043.CrossRefGoogle Scholar
  14. [14]
    Zhang, J. F.; Xie, W. Y.; Xu, X. H.; Zhang, S. B.; Zhao, J. J. Structural and electronic properties of interfaces in graphene and hexagonal boron nitride lateral heterostructures. Chem. Mater. 2016, 28, 5022–5028.CrossRefGoogle Scholar
  15. [15]
    Yu, Z. G.; Zhang, Y. W. Electronic properties of mutually embedded h-BN and graphene: A first principles study. Chem. Phys. Lett. 2016, 666, 33–37.CrossRefGoogle Scholar
  16. [16]
    Krsmanović, R. S.; Šljivančanin, Ž. Atomic structure, electronic properties, and reactivity of in-plane heterostructures of graphene and hexagonal boron nitride. J. Phys. Chem. C 2014, 118, 16104–16112.CrossRefGoogle Scholar
  17. [17]
    Nguyen, M.-T. Reactivity of graphene and hexagonal boron nitride in-plane heterostructures with oxygen: A DFT study. ChemPhysChem 2014, 15, 2372–2376.CrossRefGoogle Scholar
  18. [18]
    Li, M. Z.; Wang, Y. O.; Tang, P.; Xie, N. H.; Zhao, Y. X.; Liu, X.; Hu, G.; Xie, J. L.; Zhao, Y. F.; Tang, J. W. et al. Graphene with atomic-level in-plane decoration of h-BN domains for efficient photocatalysis. Chem. Mater. 2017, 29, 2769–2776.CrossRefGoogle Scholar
  19. [19]
    Chen, X. K.; Hu, J. W.; Wu, X. J.; Jia, P.; Peng, Z. H.; Chen, K. Q. Tunable thermal rectification in graphene/hexagonal boron nitride hybrid structures. J. Phys. D: Appl. Phys. 2018, 51, 085103.CrossRefGoogle Scholar
  20. [20]
    Liu, Z.; Ma, L. L.; Shi, G.; Zhou, W.; Gong, Y. L.; Lei, S. D.; Yang, X. B.; Zhang, J. N.; Yu, J. L.; Hackenberg, K. P. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol. 2013, 8, 119–124.CrossRefGoogle Scholar
  21. [21]
    Levendorf, M. P.; Kim, C. J.; Brown, L.; Huang, P. Y.; Havener, R. W.; Muller, D. A.; Park, J. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 2012, 488, 627–632.CrossRefGoogle Scholar
  22. [22]
    Huang, C. M.; Wu, S. F.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. D. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 2014, 13, 1096–1101.CrossRefGoogle Scholar
  23. [23]
    Zhang, S. Y.; Li, J. D.; Wu, H. R.; Li, X. M.; Guo, W. L. Direct synthesizing in-plane heterostructures of graphene and hexagonal boron nitride in designed pattern. Adv. Mater. Interfaces 2018, 5, 1800208.CrossRefGoogle Scholar
  24. [24]
    Zhang, X. Q.; Lin, C. H.; Tseng, Y. W.; Huang, K. H.; Lee, Y. H. Synthesis of lateral heterostructures of semiconducting atomic layers. Nano Lett. 2015, 15, 410–415.CrossRefGoogle Scholar
  25. [25]
    Liu, L.; Park, J.; Siegel, D. A.; McCarty, K. F.; Clark, K. W.; Deng, W.; Basile, L.; Idrobo, J. C.; Li, A. P.; Gu, G. Heteroepitaxial growth of twodimensional hexagonal boron nitride templated by graphene edges. Science 2014, 343, 163–167.CrossRefGoogle Scholar
  26. [26]
    Li, M.-Y.; Shi, Y.; Cheng, C.-C.; Lu, L.-S.; Lin, Y.-C.; Tang, H.-L.; Tsai, M.-L.; Chu, C.-W.; Wei, K.-H.; He, J.-H. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral P-N junction with an atomically sharp interface. Science 2015, 349, 524–528.CrossRefGoogle Scholar
  27. [27]
    Nappini, S.; Píš, I.; Menteş, T. O.; Sala, A.; Cattelan, M.; Agnoli, S.; Bondino, F.; Magnano, E. Formation of a quasi-free-standing single layer of graphene and hexagonal boron nitride on Pt(111) by a single molecular precursor. Adv. Funct. Mater. 2016, 26, 1120–1126.CrossRefGoogle Scholar
  28. [28]
    Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. Transition metal-catalyzed formation of boron−nitrogen bonds: Catalytic dehydrocoupling of amineborane adducts to form aminoboranes and borazines. J. Am. Chem. Soc. 2003, 125, 9424–9434.CrossRefGoogle Scholar
  29. [29]
    Bowden, M. E.; Brown, I. W. M.; Gainsford, G. J.; Wong, H. Structure and thermal decomposition of methylamine borane. Inorg. Chim. Acta 2008, 361, 2147–2153.CrossRefGoogle Scholar
  30. [30]
    Christmann, K.; Ertl, G.; Pignet, T. Adsorption of hydrogen on a Pt(111) surface. Surf. Sci. 1976, 54, 365–392.CrossRefGoogle Scholar
  31. [31]
    Nappini, S.; Píš, I.; Carraro, G.; Celasco, E.; Smerieri, M.; Savio, L.; Magnano, E.; Bondino, F. On-surface synthesis of different boron–nitrogen–carbon heterostructures from dimethylamine borane. Carbon 2017, 120, 185–193.CrossRefGoogle Scholar
  32. [32]
    Herceg, E.; Trenary, M. Formation of surface CN from the coupling of C and N atoms on Pt(111). J. Am. Chem. Soc. 2003, 125, 15758–15759.CrossRefGoogle Scholar
  33. [33]
    Gao, M.; Pan, Y.; Huang, L.; Hu, H.; Zhang, L. Z.; Guo, H. M.; Du, S. X.; Gao, H. J. Epitaxial growth and structural property of graphene on Pt(111). Appl. Phys. Lett. 2011, 98, 033101.CrossRefGoogle Scholar
  34. [34]
    Feng, X. F.; Wu, J.; Bell, A. T.; Salmeron, M. An atomic-scale view of the nucleation and growth of graphene islands on Pt surfaces. J. Phys. Chem. C 2015, 119, 7124–7129.CrossRefGoogle Scholar
  35. [35]
    Bauer, M.; Bernard, D. 2D growth processes: SLE and Loewner chains. Phys. Rep. 2006, 432, 115–221.CrossRefGoogle Scholar
  36. [36]
    Loginova, E.; Bartelt, N. C.; Feibelman, P. J.; McCarty, K. F. Evidence for graphene growth by C cluster attachment. New J. Phys. 2008, 10, 093026.CrossRefGoogle Scholar
  37. [37]
    Kim, H. W.; Ko, W.; Ku, J.; Kim, Y.; Park, S.; Hwang, S. Evolution of graphene growth on Pt(111): From carbon clusters to nanoislands. J. Phys. Chem. C 2017, 121, 25074–25078.CrossRefGoogle Scholar
  38. [38]
    Lacovig, P.; Pozzo, M.; Alfè, D.; Vilmercati, P.; Baraldi, A.; Lizzit, S. Growth of dome-shaped carbon nanoislands on Ir(111): The intermediate between carbidic clusters and quasi-free-standing graphene. Phys. Rev. Lett. 2009, 103, 166101.CrossRefGoogle Scholar
  39. [39]
    Yuan, Q. H.; Gao, J. F.; Shu, H. B.; Zhao, J. J.; Chen, X. S.; Ding, F. Magic carbon clusters in the chemical vapor deposition growth of graphene. J. Am. Chem. Soc. 2012, 134, 2970–2975.CrossRefGoogle Scholar
  40. [40]
    Gao, J. F.; Ding, F. The structure and stability of magic carbon clusters observed in graphene chemical vapor deposition growth on Ru(0001) and Rh(111) surfaces. Angew. Chem., Int. Ed. 2014, 53, 14031–14035.CrossRefGoogle Scholar
  41. [41]
    Lambin, P.; Amara, H.; Ducastelle, F.; Henrard, L. Long-range interactions between substitutional nitrogen dopants in graphene: Electronic properties calculations. Phys. Rev. B 2012, 86, 045448.CrossRefGoogle Scholar
  42. [42]
    Zhao, L. Y.; He, R.; Rim, K. T.; Schiros, T.; Kim, K. S.; Zhou, H.; Gutiérrez, C.; Chockalingam, S. P.; Arguello, C. J.; Pálová, L. et al. Visualizing individual nitrogen dopants in monolayer graphene. Science 2011, 333, 999–1003.CrossRefGoogle Scholar
  43. [43]
    Ćavar, E.; Westerström, R.; Mikkelsen, A.; Lundgren, E.; Vinogradov, A. S.; Ng, M. L.; Preobrajenski, A. B.; Zakharov, A. A.; Mårtensson, N. A single H-BN layer on Pt(111). Surf. Sci. 2008, 602, 1722–1726.CrossRefGoogle Scholar
  44. [44]
    Kim, H.; Mattevi, C.; Calvo, M. R.; Oberg, J. C.; Artiglia, L.; Agnoli, S.; Hirjibehedin, C. F.; Chhowalla, M.; Saiz, E. Activation energy paths for graphene nucleation and growth on Cu. ACS Nano 2012, 6, 3614–3623.CrossRefGoogle Scholar
  45. [45]
    Gao, J. F.; Yip, J.; Zhao, J. J.; Yakobson, B. I.; Ding, F. Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 2011, 133, 5009–5015.CrossRefGoogle Scholar
  46. [46]
    Gao, J. F.; Yuan, Q. H.; Hu, H.; Zhao, J. J.; Ding, F. Formation of carbon clusters in the initial stage of chemical vapor deposition graphene growth on Ni(111) surface. J. Phys. Chem. C 2011, 115, 17695–17703.CrossRefGoogle Scholar
  47. [47]
    Lu, J.; Zhang, K.; Liu, X. F.; Zhang, H.; Sum, T. C.; Neto, A. H. C.; Loh, K. P. Order-disorder transition in a two-dimensional boron-carbon-nitride alloy. Nat. Commun. 2013, 4, 2681.CrossRefGoogle Scholar
  48. [48]
    Zhu, J.; Bhandary, S.; Sanyal, B.; Ottosson, H. Interpolation of atomically thin hexagonal boron nitride and graphene: Electronic structure and thermodynamic stability in terms of all-carbon conjugated paths and aromatic hexagons. J. Phys. Chem. C 2011, 115, 10264–10271.CrossRefGoogle Scholar
  49. [49]
    Cattelan, M.; Peng, G. W.; Cavaliere, E.; Artiglia, L.; Barinov, A.; Roling, L. T.; Favaro, M.; Píš, I.; Nappini, S.; Magnano, E. et al. The nature of the Fe-graphene interface at the nanometer level. Nanoscale 2015, 7, 2450–2460.CrossRefGoogle Scholar
  50. [50]
    Achilli, S.; Cavaliere, E.; Nguyen, T. H.; Cattelan, M.; Agnoli, S. Growth and electronic structure of 2D hexagonal nanosheets on a corrugated rectangular substrate. Nanotechnology 2018, 29, 485201.CrossRefGoogle Scholar
  51. [51]
    Liu, M. X.; Li, Y. C.; Chen, P. C.; Sun, J. Y.; Ma, D. L.; Li, Q. C.; Gao, T.; Gao, Y. B.; Cheng, Z. H.; Qiu, X. H. et al. Quasi-freestanding monolayer heterostructure of graphene and hexagonal boron nitride on Ir(111) with a zigzag boundary. Nano Lett. 2014, 14, 6342–6347.CrossRefGoogle Scholar
  52. [52]
    Hwang, B.; Hwang, J.; Yoon, J. K.; Lim, S.; Kim, S.; Lee, M.; Kwon, J. H.; Baek, H.; Sung, D.; Kim, G. et al. Energy bandgap and edge states in an epitaxially grown graphene/h-BN heterostructure. Sci. Rep. 2016, 6, 31160.CrossRefGoogle Scholar
  53. [53]
    Gao, Y. B.; Zhang, Y. F.; Chen, P. C.; Li, Y. C.; Liu, M. X.; Gao, T.; Ma, D. L.; Chen, Y. B.; Cheng, Z. H.; Qiu, X. H. et al. Toward single-layer uniform hexagonal boron nitride-graphene patchworks with zigzag linking edges. Nano Lett. 2013, 13, 3439–3443.CrossRefGoogle Scholar
  54. [54]
    Li, Q. C.; Zou, X. L.; Liu, M. X.; Sun, J. Y.; Gao, Y. B.; Qi, Y.; Zhou, X. B.; Yakobson, B. I.; Zhang, Y. F.; Liu, Z. F. Grain boundary structures and electronic properties of hexagonal boron nitride on Cu(111). Nano Lett. 2015, 15, 5804–5810.CrossRefGoogle Scholar
  55. [55]
    Henck, H.; Pierucci, D.; Fugallo, G.; Avila, J.; Cassabois, G.; Dappe, Y. J.; Silly, M. G.; Chen, C. Y.; Gil, B.; Gatti, M. et al. Direct observation of the band structure in bulk hexagonal boron nitride. Phys. Rev. B 2017, 95, 085410.CrossRefGoogle Scholar
  56. [56]
    Usachov, D.; Adamchuk, V. K.; Haberer, D.; Grüneis, A.; Sachdev, H.; Preobrajenski, A. B.; Laubschat, C.; Vyalikh, D. V. Quasifreestanding singlelayer hexagonal boron nitride as a substrate for graphene synthesis. Phys. Rev. B 2010, 82, 075415.CrossRefGoogle Scholar
  57. [57]
    Hwang, J.; Hwang, H.; Kim, M.-J.; Ryu, H.; Lee, J.-E.; Zhou, Q.; Mo, S.-K.; Lee, J.; Lanzara, A.; Hwang, C. Hole doping, hybridization gaps, and electronic correlation in graphene on a platinum substrate. Nanoscale 2017, 9, 11498–11503.CrossRefGoogle Scholar
  58. [58]
    Klimovskikh, I. I.; Tsirkin, S. S.; Rybkin, A. G.; Rybkina, A. A.; Filianina, M. V.; Zhizhin, E. V.; Chulkov, E. V.; Shikin, A. M. Nontrivial spin structure of graphene on Pt(111) at the fermi level due to spin-dependent hybridization. Phys. Rev. B. 2014, 90, 235431.CrossRefGoogle Scholar
  59. [59]
    Klimovskikh, I. I.; Otrokov, M. M.; Voroshnin, V. Y.; Sostina, D.; Petaccia, L.; Di Santo, G.; Thakur, S.; Chulkov, E. V.; Shikin, A. M. Spin-orbit coupling induced gap in graphene on Pt(111) with intercalated Pb monolayer. ACS Nano 2017, 11, 368–374.CrossRefGoogle Scholar
  60. [60]
    Han, N. N.; Liu, H. S.; Zhang, J. F.; Gao, J. F.; Zhao, J. J. Atomistic understanding of the lateral growth of graphene from the edge of an h-BN domain: Towards a sharp in-plane junction. Nanoscale 2017, 9, 3585–3592.CrossRefGoogle Scholar
  61. [61]
    Cattelan, M.; Agnoli, S.; Favaro, M.; Garoli, D.; Romanato, F.; Meneghetti, M.; Barinov, A.; Dudin, P.; Granozzi, G. Microscopic View on a chemical vapor deposition route to boron-doped graphene nanostructures. Chem. Mater. 2013, 25, 1490–1495.CrossRefGoogle Scholar
  62. [62]
    De Souza, F. A. L.; Amorim, R. G.; Scopel, W. L.; Scheicher, R. H. Nano-structured interface of graphene and h-BN for sensing applications. Nanotechnology 2016, 27, 365503.CrossRefGoogle Scholar
  63. [63]
    Petrushenko, I. K.; Petrushenko, K. B. Hydrogen adsorption on graphene, hexagonal boron nitride, and graphene-like boron nitride-carbon heterostructures: A comparative theoretical study. Int. J. Hydrogen Energy 2018, 43, 801–808.CrossRefGoogle Scholar
  64. [64]
    Song, X. J.; Sun, J. Y.; Qi, Y.; Gao, T.; Zhang, Y. F.; Liu, Z. F. Graphene/h-BN heterostructures: Recent advances in controllable preparation and functional applications. Adv. Energy Mater. 2016, 6, 1600541.CrossRefGoogle Scholar
  65. [65]
    Bhowmick, S.; Singh, A. K.; Yakobson, B. I. Quantum dots and nanoroads of graphene embedded in hexagonal boron nitride. J. Phys. Chem. C 2011, 115, 9889–9893.CrossRefGoogle Scholar
  66. [66]
    Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21, 395502.Google Scholar
  67. [67]
    Hamada, I.; Otani, M. Comparative van der Waals density-functional study of graphene on metal surfaces. Phys. Rev. B 2010, 82, 153412.CrossRefGoogle Scholar
  68. [68]
    Tersoff, J.; Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 1985, 31, 805–813.CrossRefGoogle Scholar
  69. [69]
    Lee, C.; Yang, W. T.; Parr, R. G. Development of the colle-salvetti correlationenergy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.CrossRefGoogle Scholar
  70. [70]
    Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chern. Phys. 1993, 98, 5648–5652.Google Scholar
  71. [71]
    Dovesi, R.; Orlando, R.; Erba, A.; Zicovich-Wilson, C. M.; Civalleri, B.; Casassa, S.; Maschio, L.; Ferrabone, M.; De La Pierre, M.; D’Arco, P. et al. CRYSTAL14: A program for the ab initio investigation of crystalline solids. Int. J. Quantum Chem. 2014, 114, 1287–1317.CrossRefGoogle Scholar
  72. [72]
    Dovesi, R.; Saunders, V. R.; Roetti, C.; Orlando, R.; Zicovich-Wilson, C. M.; Pascale, F.; Civalleri, B.; Doll, K.; Harrison, N. M.; Bush, I. J. et al. CRYSTAL14 user’s manual; University of Torino: Torino, Italy, 2014.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Thanh Hai Nguyen
    • 1
  • Daniele Perilli
    • 2
  • Mattia Cattelan
    • 1
    • 3
  • Hongsheng Liu
    • 2
  • Francesco Sedona
    • 1
  • Neil A. Fox
    • 3
  • Cristiana Di Valentin
    • 2
  • Stefano Agnoli
    • 1
    Email author
  1. 1.Department of Chemical Science University of PadovaPadovaItaly
  2. 2.Dipartimento di Scienza dei MaterialiUniversità di Milano-BicoccaMilanoItaly
  3. 3.School of ChemistryUniversity of BristolBristolUK

Personalised recommendations