Advertisement

Composition optimized trimetallic PtNiRu dendritic nanostructures as versatile and active electrocatalysts for alcohol oxidation

  • Yan Lu
  • Wei Wang
  • Xiaowei Chen
  • Yuhui Zhang
  • Yanchen Han
  • Yong Cheng
  • Xue-Jiao Chen
  • Kai Liu
  • Yuanyuan Wang
  • Qiaobao Zhang
  • Shuifen XieEmail author
Research Article
  • 261 Downloads

Abstract

Platinum-based nanocrystals are the most effective electrocatalysts for accelerating the chemical transformations on the anode in direct alcohol fuel cells. To facilitate practical applications and overcome the drawbacks of diverse alcohols, it is significant to develop electrocatalysts with high activities and a wide fuel flexibility. Here, we demonstrate a practicable solution method for fabricating composition tunable trimetallic PtNiRu dendritic nanostructures (DNSs) which can serve as versatile and active catalysts for electrooxidation of a variety of liquid alcohols. A series of trimetallic DNSs with tunable Pt/Ni/Ru atomic ratios were successfully synthesized by simply adjusting the feeding of precursors. Detailed electrochemical test indicates that, among other compositions, the Pt66Ni27Ru7 DNSs present much superior electroactivity in catalyzing electrooxidation of liquid alcohols in acidic mediums. Specifically, the mass activity and specific activity on the Pt66Ni27Ru7 DNSs, for electrooxidation of methanol, ethanol, and ethylene glycol, are 4.57 and 4.34 times, 3.55 and 3.42 times, and 2.37 and 2.28 times that of the commercial Pt black, respectively. X-ray photoelectron spectroscopy and CO stripping studies reveal the adsorption of CO on these PtNiRu DNSs is much weaker than on pure Pt. Meanwhile, the surface Ru sites can provide neighbouring–OH groups to facilitate the oxidation and removal of the adsorbed intermediates (–CO) on the surface Pt sites, effectively improving the CO tolerance of the catalysts. The PtNiRu DNSs also show effectively boosted capacity for breaking the C–C bond in C2-alcohols, showing great potential for fuel-flexible fuel cell applications.

Keywords

platinum-based nanocrystals dendritic nanostructures fuel flexibility electrooxidation of alcohols CO tolerance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21771067), the Natural Science Foundation of Fujian Province (Distinguished Young Investigator, 2017J06005), the Natural Science Foundation of Guangdong Province (No. 2015A030310011), the Program for New Century Excellent Talents in Fujian Province University and the Scientific Research Funds of Huaqiao University. We also thank the Instrumental Analysis Center of Huaqiao University for analysis support.

Supplementary material

12274_2019_2273_MOESM1_ESM.pdf (9.9 mb)
Supplementary material, approximately 10184 KB.

References

  1. [1]
    Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F. P.; Zeng, M. et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun. 2015, 6, 10035.CrossRefGoogle Scholar
  2. [2]
    Liu, M. M.; Zhang, R. Z.; Chen, W. Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications. Chem. Rev. 2014, 114, 5117–5160.CrossRefGoogle Scholar
  3. [3]
    Cao, S. W.; Tao, F.; Tang, Y.; Li, Y. T.; Yu, J. G. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 2016, 45, 4747–4765.CrossRefGoogle Scholar
  4. [4]
    Wang, Y.; Zou, S. Z.; Cai, W. B. Recent advances on electro-oxidation of ethanol on Pt- and Pd-based catalysts: From reaction mechanisms to catalytic materials. Catalysts 2015, 5, 1507–1534.CrossRefGoogle Scholar
  5. [5]
    Serov, A.; Kwak, C. Recent achievements in direct ethylene glycol fuel cells (DEGFC). Appl. Catal. B: Environ. 2010, 97, 1–12.CrossRefGoogle Scholar
  6. [6]
    Zhu, C. Z.; Guo, S. J.; Dong, S. J. PdM (M=Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules. Adv. Mater. 2012, 24, 2326–2331.CrossRefGoogle Scholar
  7. [7]
    Zhao, X.; Yin, M.; Ma, L.; Liang, L.; Liu, C. P.; Liao, J. H.; Lu, T. H.; Xing, W. Recent advances in catalysts for direct methanol fuel cells. Energy Environ. Sci. 2011, 4, 2736–2753.CrossRefGoogle Scholar
  8. [8]
    Niu, Z. Q.; Wang, D. S.; Yu, R.; Peng, Q.; Li, Y. D. Highly branched Pt-Ni nanocrystals enclosed by stepped surface for methanol oxidation. Chem. Sci. 2012, 3, 1925–1929.CrossRefGoogle Scholar
  9. [9]
    Ma, S. Y.; Li, H. H.; Hu, B. C.; Cheng, X.; Fu, Q. Q.; Yu, S. H. Synthesis of low Pt-based quaternary PtPdRuTe nanotubes with optimized incorporation of Pd for enhanced electrocatalytic activity. J. Am. Chem. Soc. 2017, 139, 5890–5895.CrossRefGoogle Scholar
  10. [10]
    Feng, Q. C.; Zhao, S.; He, D. S.; Tian, S. B.; Gu, L.; Wen, X. D.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J. Am. Chem. Soc. 2018, 140, 2773–2776.CrossRefGoogle Scholar
  11. [11]
    Yan, Y. C.; Shan, H.; Li, G.; Xiao, F.; Jiang, Y. Y.; Yan, Y. Y.; Jin, C. H.; Zhang, H.; Wu, J. B.; Yang, D. R. Epitaxial growth of multimetallic Pd@PtM (M=Ni, Rh, Ru) core-shell nanoplates realized by in situ-produced CO from interfacial catalytic reactions. Nano Lett. 2016, 16, 7999–8004.CrossRefGoogle Scholar
  12. [12]
    Huang, L.; Zhang, X. P.; Wang, Q. Q.; Han, Y. J.; Fang, Y. X.; Dong, S. J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 2018, 140, 1142–1147.CrossRefGoogle Scholar
  13. [13]
    Chen, Q. L.; Yang, Y. N.; Cao, Z. M.; Kuang, Q.; Du, G. F.; Jiang, Y. Q.; Xie, Z. X.; Zheng, L. S. Excavated cubic platinum-tin alloy nanocrystals constructed from ultrathin nanosheets with enhanced electrocatalytic activity. Angew. Chem., Int. Ed. 2016, 55, 9021–9025.CrossRefGoogle Scholar
  14. [14]
    Shang, C. S.; Guo, Y. X.; Wang, E. K. Facile fabrication of PdRuPt nanowire networks with tunable compositions as efficient methanol electrooxidation catalysts. Nano Res. 2018, 11, 4348–4355.CrossRefGoogle Scholar
  15. [15]
    Mao, J. J.; Chen, W. X.; He, D. S.; Wan, J. W.; Pei, J. J.; Dong, J. C.; Wang, Y.; An, P. F.; Jin, Z.; Xing, W. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, e1603068.CrossRefGoogle Scholar
  16. [16]
    Hong, W.; Shang, C. S.; Wang, J.; Wang, E. K. Bimetallic PdPt nanowire networks with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation. Energy Environ. Sci. 2015, 8, 2910–2915.CrossRefGoogle Scholar
  17. [17]
    Feng, Y. G.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. 3D platinum-lead nanowire networks as highly efficient ethylene glycol oxidation electrocatalysts. Small 2016, 12, 4464–4470.CrossRefGoogle Scholar
  18. [18]
    Erini, N.; Beermann, V.; Gocyla, M.; Gliech, M.; Heggen, M.; Dunin-Borkowski, R. E.; Strasser, P. The effect of surface site ensembles on the activity and selectivity of ethanol electrooxidation by octahedral PtNiRh nanoparticles. Angew. Chem., Int. Ed. 2017, 56, 6533–6538.CrossRefGoogle Scholar
  19. [19]
    Liu, L.; Lin, X. X.; Zou, S. Y.; Wang, A. J.; Chen, J. R.; Feng, J. J. One-pot wet-chemical synthesis of PtPd@Pt nanocrystals supported on reduced graphene oxide with highly electrocatalytic performance for ethylene glycol oxidation. Electrochim. Acta 2016, 187, 576–583.CrossRefGoogle Scholar
  20. [20]
    Wang, Y. Y.; Wang, W.; Xue, F.; Cheng, Y.; Liu, K.; Zhang, Q. B.; Liu, M. C.; Xie, S. F. One-pot synthesis of Pd@Pt3Ni core-shell nanobranches with ultrathin Pt3Ni{111} skins for efficient ethanol electrooxidation. Chem. Commun. 2018, 54, 5185–5188.CrossRefGoogle Scholar
  21. [21]
    Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE): Washington, DC, 2015.Google Scholar
  22. [22]
    Hsieh, Y. C.; Zhang, Y.; Su, D.; Volkov, V.; Si, R.; Wu, L. J.; Zhu, Y. M.; An, W.; Liu, P.; He, P. et al. Ordered bilayer ruthenium-platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts. Nat. Commun. 2013, 4, 2466.CrossRefGoogle Scholar
  23. [23]
    Lamy, C.; Lima, A.; LeRhun, V.; Delime, F.; Coutanceau, C.; Léger, J. M. Recent advances in the development of direct alcohol fuel cells (DAFC). J. Power Sources 2002, 105, 283–296.CrossRefGoogle Scholar
  24. [24]
    Wang, P.; Yin, S. B.; Wen, Y.; Tian, Z. Q.; Wang, N. Z.; Key, J. L.; Wang, S. B.; Shen, P. K. Ternary Pt9RhFex nanoscale alloys as highly efficient catalysts with enhanced activity and excellent CO-poisoning tolerance for ethanol oxidation. ACS Appl. Mater. Interfaces 2017, 9, 9584–9591.CrossRefGoogle Scholar
  25. [25]
    Liu, X. W.; Wang, D. S.; Li, Y. D. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 2012, 7, 448–466.CrossRefGoogle Scholar
  26. [26]
    Liu, H. L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056–3078.CrossRefGoogle Scholar
  27. [27]
    Wu, Z. H.; Yang, S. L.; Wu, W. Shape control of inorganic nanoparticles from solution. Nanoscale 2016, 8, 1237–1259.CrossRefGoogle Scholar
  28. [28]
    Kleijn, S. E. F.; Lai, S. C. S.; Koper, M. T. M.; Unwin, P. R. Electrochemistry of nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 3558–3586.CrossRefGoogle Scholar
  29. [29]
    Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.CrossRefGoogle Scholar
  30. [30]
    Zhang, J.; Fang, J. Y. A general strategy for preparation of Pt 3d-transition metal (Co, Fe, Ni) nanocubes. J. Am. Chem. Soc. 2009, 131, 18543–18547.CrossRefGoogle Scholar
  31. [31]
    Chen, L. X.; Zhu, J.; Xuan, C. J.; Xiao, W. P.; Xia, K. D.; Xia, W. W.; Lai, C. L.; Xin, H. L.; Wang, D. L. Effects of crystal phase and composition on structurally ordered Pt-Co-Ni/C ternary intermetallic electrocatalysts for the formic acid oxidation reaction. J. Mater. Chem. A 2018, 6, 5848–5855.CrossRefGoogle Scholar
  32. [32]
    Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934–13937.CrossRefGoogle Scholar
  33. [33]
    Guo, Z. G.; Dai, X. P.; Yang, Y.; Zhang, Z. C.; Zhang, X.; Mi, S. Q.; Xu, K.; Li, Y. F. Highly stable and active PtNiFe dandelion-like alloys for methanol electrooxidation. J. Mater. Chem. A 2013, 1, 13252–13260.CrossRefGoogle Scholar
  34. [34]
    Teng, X. W.; Maksimuk, S.; Frommer, S.; Yang, H. Three-dimensional PtRu nanostructures. Chem. Mater. 2007, 19, 36–41.CrossRefGoogle Scholar
  35. [35]
    Wang, F.; Li, C. H.; Sun, L. D.; Xu, C. H.; Wang, J. F.; Yu, J. C.; Yan, C. H. Porous single-crystalline palladium nanoparticles with high catalytic activities. Angew. Chem., Int. Ed. 2012, 51, 4872–4876.CrossRefGoogle Scholar
  36. [36]
    Qu, X. M.; Cao, Z. M.; Zhang, B. W.; Tian, X. C.; Zhu, F. C.; Zhang, Z. C.; Jiang, Y. X.; Sun, S. G. One-pot synthesis of single-crystalline PtPb nanodendrites with enhanced activity for electrooxidation of formic acid. Chem. Commun. 2016, 52, 4493–4496.CrossRefGoogle Scholar
  37. [37]
    Wang, W. Y.; Wang, D. S.; Liu, X. W.; Peng, Q.; Li, Y. D. Pt-Ni nanodendrites with high hydrogenation activity. Chem. Commun. 2013, 49, 2903–2905.CrossRefGoogle Scholar
  38. [38]
    Li, X.; Chen, Q.; Wang, M. Y.; Cao, Z. M.; Zhan, Q.; He, T. O.; Kuang, Q.; Yin, Y. D.; Jin, M. S. Coordination effect assisted synthesis of ultrathin Pt layers on second metal nanocrystals as efficient oxygen reduction electrocatalysts. J. Mater. Chem. A 2016, 4, 13033–13039.CrossRefGoogle Scholar
  39. [39]
    Wang, W.; Cao, Z. M.; Liu, K.; Chen, J. Y.; Wang, Y. Y.; Xie, S. F. Ligandassisted, one-pot synthesis of Rh-on-Cu nanoscale sea urchins with highdensity interfaces for boosting CO oxidation. Nano Lett. 2017, 17, 7613–7619.CrossRefGoogle Scholar
  40. [40]
    Liu, H. X.; Tian, N.; Brandon, M. P.; Zhou, Z. Y.; Lin, J. L.; Hardacre, C.; Lin, W. F.; Sun, S. G. Tetrahexahedral Pt nanocrystal catalysts decorated with Ru adatoms and their enhanced activity in methanol electrooxidation. ACS Catal. 2012, 2, 708–715.CrossRefGoogle Scholar
  41. [41]
    Li, H. H.; Zhao, S.; Gong, M.; Cui, C. H.; He, D.; Liang, H. W.; Wu, L.; Yu, S. H. Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation. Angew. Chem., Int. Ed. 2013, 52, 7472–7476.CrossRefGoogle Scholar
  42. [42]
    Kua, J.; Goddard III, W. A. Oxidation of methanol on 2nd and 3rd row group VIII transition metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to direct methanol fuel cells. J. Am. Chem. Soc. 1999, 121, 10928–10941.CrossRefGoogle Scholar
  43. [43]
    Greeley, J.; Mavrikakis, M. Competitive paths for methanol decomposition on Pt(111). J. Am. Chem. Soc. 2004, 126, 3910–3919.CrossRefGoogle Scholar
  44. [44]
    Sakong, S.; Groß, A. The importance of the electrochemical environment in the electro-oxidation of methanol on Pt(111). ACS Catal. 2016, 6, 5575–5586.CrossRefGoogle Scholar
  45. [45]
    Zhuang, L.; Jin, J.; Abruña, H. D. Direct observation of electrocatalytic synergy. J. Am. Chem. Soc. 2007, 129, 11033–11035.CrossRefGoogle Scholar
  46. [46]
    Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys. 2004, 120, 10240–10246.CrossRefGoogle Scholar
  47. [47]
    Xiao, M. L.; Feng, L. G.; Zhu, J. B.; Liu, C. P.; Xing, W. Rapid synthesis of a PtRu nano-sponge with different surface compositions and performance evaluation for methanol electrooxidation. Nanoscale 2015, 7, 9467–9471.CrossRefGoogle Scholar
  48. [48]
    Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. 2016, 15, 564–569.CrossRefGoogle Scholar
  49. [49]
    Colle, V. D.; Giz, M. J.; Tremiliosi-Filho, G. Spontaneous deposition of Ru on Pt (100): Morphological and electrochemical studies. Preliminary results of ethanol oxidation at Pt(100)/Ru. J. Braz. Chem. Soc. 2003, 14, 601–609.CrossRefGoogle Scholar
  50. [50]
    Sulaiman, J. E.; Zhu, S. Q.; Xing, Z. L.; Chang, Q. W.; Shao, M. H. Pt-Ni octahedra as electrocatalysts for the ethanol electro-oxidation reaction. ACS Catal. 2017, 7, 5134–5141.CrossRefGoogle Scholar
  51. [51]
    Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.CrossRefGoogle Scholar
  52. [52]
    Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.CrossRefGoogle Scholar
  53. [53]
    Lu, S. Q.; Li, H. M.; Sun, J. Y.; Zhuang, Z. B. Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles. Nano Res. 2018, 11, 2058–2068.CrossRefGoogle Scholar
  54. [54]
    Electronegativities of the elements (data page) [Online]. https://en.wikipedia.org/wiki/Electronegativities_of_the_elements_(data_page) (accessed Oct 7, 2018).Google Scholar
  55. [55]
    Hirschl, R.; Delbecq, F.; Sautet, P.; Hafner, J. Pt80Fe20 surface from first principles: Electronic structure and adsorption of CO and atomic H. Phys. Rev. B 2002, 66, 155438.CrossRefGoogle Scholar
  56. [56]
    Blyholder, G. Molecular orbital view of chemisorbed carbon monoxide. J. Phys. Chem. 1964, 68, 2772–2777.CrossRefGoogle Scholar
  57. [57]
    Delbecq, F. General trends in the electronic properties of alloys of transition metals: A semi-empirical study of CO adsorption. Surf. Sci. 1997, 389, L1131–L1139.CrossRefGoogle Scholar
  58. [58]
    Rao, L.; Jiang, Y. X.; Zhang, B. W.; Cai, Y. R.; Sun, S. G. High activity of cubic PtRh alloys supported on graphene towards ethanol electrooxidation. Phys. Chem. Chem. Phys. 2014, 16, 13662–13671.CrossRefGoogle Scholar
  59. [59]
    Yuan, Q.; Zhou, Z. Y.; Zhuang, J.; Wang, X. Seed displacement, epitaxial synthesis of Rh/Pt bimetallic ultrathin nanowires for highly selective oxidizing ethanol to CO2. Chem. Mater. 2010, 22, 2395–2402.CrossRefGoogle Scholar
  60. [60]
    Gootzen, J. F. E.; Visscher, W.; van Veen, J. A. R. Characterization of ethanol and 1,2-ethanediol adsorbates on platinized platinum with fourier transform infrared spectroscopy and differential electrochemical mass spectrometry. Langmuir 1996, 12, 5076–5082.CrossRefGoogle Scholar
  61. [61]
    de Bruijn, F. A.; Dam, V. A. T.; Janssen, G. J. M. Review: Durability and degradation issues of PEM fuel cell components. Fuel Cells 2008, 8, 3–22.CrossRefGoogle Scholar
  62. [62]
    Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.CrossRefGoogle Scholar
  63. [63]
    Xu, Y.; Zhang, B. Recent advances in porous Pt-based nanostructures: Synthesis and electrochemical applications. Chem. Soc. Rev. 2014, 43, 2439–2450.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yan Lu
    • 1
  • Wei Wang
    • 1
    • 2
    • 3
  • Xiaowei Chen
    • 1
  • Yuhui Zhang
    • 1
  • Yanchen Han
    • 1
  • Yong Cheng
    • 4
  • Xue-Jiao Chen
    • 1
  • Kai Liu
    • 1
  • Yuanyuan Wang
    • 1
  • Qiaobao Zhang
    • 4
  • Shuifen Xie
    • 1
    • 3
    Email author
  1. 1.College of Materials Science and EngineeringHuaqiao UniversityXiamenChina
  2. 2.Department of PhysicsXiamen UniversityXiamenChina
  3. 3.Shenzhen Research Institute of Xiamen UniversityShenzhenChina
  4. 4.Department of Materials Science and EngineeringXiamen UniversityXiamenChina

Personalised recommendations