Efficient renal clearance of DNA tetrahedron nanoparticles enables quantitative evaluation of kidney function

  • Dawei Jiang
  • Hyung-Jun Im
  • Madeline E. Boleyn
  • Christopher G. England
  • Dalong Ni
  • Lei Kang
  • Jonathan W. Engle
  • Peng HuangEmail author
  • Xiaoli LanEmail author
  • Weibo CaiEmail author
Research Article


DNA tetrahedron nanostructure (DTN) is one of the simplest DNA nanostructures and has been successfully applied for biosensing, imaging, and treatment of cancer. To facilitate its biomedical applications and potential clinical translation, fundamental understanding of DTN’s transportation among major organs in living organisms becomes increasingly important. Here, we describe the efficient renal clearance of DTN in healthy mice by using positron emission tomography (PET) imaging. The kidney elimination of DTN was later applied for renal function evaluation in murine models of unilateral ureteral obstruction (UUO). We further established a mathematical program of DTN to validate its changes of transportation pattern in healthy and UUO mice. We believe the establishment of pharmacokinetic profiles and mathematical model of DTN may provide insight for future optimization of DNA nanostructures for biomedical applications.


positron emission tomography (PET) imaging DNA nanotechnology DNA tetrahedron nanoparticle renal clearance kidney dysfunction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the University of Wisconsin-Madison, the National Institutes of Health (NIBIB/NCI P30CA014520, T32CA009206), the American Cancer Society (125246-RSG-13-099-01-CCE), the National Natural Science Foundation of China (Nos. 51573096, 51703132, 31771036, and 81630049) and the Basic Research Program of Shenzhen (Nos. JCYJ20170412111100742 and JCYJ20160422091238319), the Guangdong Province Natural Science Foundation of Major Basic Research and Cultivation Project (No. 2018B030308003), and Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (No. 161032).

Supplementary material

12274_2019_2271_MOESM1_ESM.pdf (2.8 mb)
Efficient renal clearance of DNA tetrahedron nanoparticles enables quantitative evaluation of kidney function
12274_2019_2271_MOESM2_ESM.avi (14.4 mb)
Supplementary material, approximately 14710 KB.
12274_2019_2271_MOESM3_ESM.avi (10.1 mb)
Supplementary material, approximately 10388 KB.


  1. [1]
    Gopinath, A.; Miyazono, E.; Faraon, A.; Rothemund, P. W. K. Engineering and mapping nanocavity emission via precision placement of DNA origami. Nature 2016, 535, 401–405.CrossRefGoogle Scholar
  2. [2]
    Li, J.; Green, A. A.; Yan, H.; Fan, C. H. Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nat. Chem. 2017, 9, 1056–1067.CrossRefGoogle Scholar
  3. [3]
    Lin, M. H.; Wang, J. J.; Zhou, G. B.; Wang, J. B.; Wu, N.; Lu, J. X.; Gao, J. M.; Chen, X. Q.; Shi, J. Y.; Zuo, X. L. et al. Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. Angew. Chem., Int. Ed. 2015, 54, 2151–2155.CrossRefGoogle Scholar
  4. [4]
    Zhang, H. L.; Chao, J.; Pan, D.; Liu, H. J.; Qiang, Y.; Liu, K.; Cui, C. J.; Chen, J. H.; Huang, Q.; Hu, J. et al. DNA origami-based shape IDs for single-molecule nanomechanical genotyping. Nat. Commun. 2017, 8, 14738.CrossRefGoogle Scholar
  5. [5]
    Jiang, D. W.; Sun, Y. H.; Li, J.; Li, Q.; Lv, M.; Zhu, B.; Tian, T.; Cheng, D. F.; Xia, J. Y.; Zhang, L. et al. Multiple-armed tetrahedral DNA nanostructures for tumor-targeting, dual-modality in vivo imaging. ACS Appl. Mater. Interfaces 2016, 8, 4378–4384.CrossRefGoogle Scholar
  6. [6]
    Li, J. B.; Jiang, D. W.; Bao, B. L.; He, Y. L.; Liu, L.; Wang, X. M. Radiolabeling of DNA bipyramid and preliminary biological evaluation in mice. Bioconjugate Chem. 2016, 27, 905–910.CrossRefGoogle Scholar
  7. [7]
    Jiang, D. W.; England, C. G.; Cai, W. B. DNA nanomaterials for preclinical imaging and drug delivery. J. Control. Release 2016, 239, 27–38.CrossRefGoogle Scholar
  8. [8]
    Li, S. P.; Jiang, Q.; Liu, S. L.; Zhang, Y. L.; Tian, Y. H.; Song, C.; Wang, J.; Zou, Y. G.; Anderson, G. J.; Han, J. Y. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 2018, 36, 258–264.CrossRefGoogle Scholar
  9. [9]
    Jiang, D. W.; Ge, Z. L.; Im, H. J.; England, C. G.; Ni, D. L.; Hou, J. J.; Zhang, L. H.; Kutyreff, C. J.; Yan, Y. J.; Liu, Y. et al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat. Biomed. Eng. 2018, 2, 865–877.CrossRefGoogle Scholar
  10. [10]
    Goodman, R. P.; Berry, R. M.; Turberfield, A. J. The single-step synthesis of a DNA tetrahedron. Chem. Commun. (Camb) 2004, 1372–1373, DOI: 1039/b402293a.Google Scholar
  11. [11]
    Goodman, R. P.; Schaap, I. A. T.; Tardin, C. F.; Erben, C. M.; Berry, R. M.; Schmidt, C. F.; Turberfield, A. J. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 2005, 310, 1661–1665.CrossRefGoogle Scholar
  12. [12]
    Li, J.; Pei, H.; Zhu, B.; Liang, L.; Wei, M.; He, Y.; Chen, N.; Li, D.; Huang, Q.; Fan, C. H. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 2011, 5, 8783–8789.CrossRefGoogle Scholar
  13. [13]
    Lee, H.; Lytton-Jean, A. K. R.; Chen, Y.; Love, K. T.; Park, A. I.; Karagiannis, E. D.; Sehgal, A.; Querbes, W.; Zurenko, C. S.; Jayaraman, M. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 2012, 7, 389–393.CrossRefGoogle Scholar
  14. [14]
    Kim, K. R.; Lee, Y. D.; Lee, T.; Kim, B. S.; Kim, S.; Ahn, D. R. Sentinel lymph node imaging by a fluorescently labeled DNA tetrahedron. Biomaterials 2013, 34, 5226–5235.CrossRefGoogle Scholar
  15. [15]
    Choi, H. S.; Liu, W. H.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Itty Ipe, B.; Bawendi, M. G.; Frangioni, J. V. Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25, 1165–1170.CrossRefGoogle Scholar
  16. [16]
    Du, B. J.; Jiang, X. Y.; Das, A.; Zhou, Q. H.; Yu, M. X.; Jin, R. C.; Zheng, J. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 2017, 12, 1096–1102.CrossRefGoogle Scholar
  17. [17]
    Gupta, S. K.; Lewis, G.; Rogers, K. M.; Attia, J.; Rostron, K.; O’Neill, L.; Skillen, A.; Viswanathan, S. Quantitative 99mTc DTPA renal transplant scintigraphic parameters: Assessment of interobserver agreement and correlation with graft pathologies. Am. J. Nucl. Med. Mol. Imaging 2014, 4, 213–224.Google Scholar
  18. [18]
    Hofman, M.; Binns, D.; Johnston, V.; Siva, S.; Thompson, M.; Eu, P.; Collins, M.; Hicks, R. J. 68Ga-EDTA PET/CT imaging and plasma clearance for glomerular filtration rate quantification: Comparison to conventional 51Cr-EDTA. J. Nucl. Med. 2015, 56, 405–409.CrossRefGoogle Scholar
  19. [19]
    Chawla, L. S.; Eggers, P. W.; Star, R. A.; Kimmel, P. L. Acute kidney injury and chronic kidney disease as interconnected syndromes. New Engl. J. Med. 2014, 371, 58–66.CrossRefGoogle Scholar
  20. [20]
    Lewington, A. J. P.; Cerdá, J.; Mehta, R. L. Raising awareness of acute kidney injury: A global perspective of a silent killer. Kidney Int. 2013, 84, 457–467.CrossRefGoogle Scholar
  21. [21]
    Bellomo, R.; Kellum, J. A.; Ronco, C. Acute kidney injury. Lancet 2012, 380, 756–766.CrossRefGoogle Scholar
  22. [22]
    Ruggiero, A.; Villa, C. H.; Bander, E.; Rey, D. A.; Bergkvist, M.; Batt, C. A.; Manova-Todorova, K.; Deen, W. M.; Scheinberg, D. A.; McDevitt, M. R. Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl. Acad. Sci. USA 2010, 107, 12369–12374.CrossRefGoogle Scholar
  23. [23]
    Liu, J. B.; Yu, M. X.; Ning, X. H.; Zhou, C.; Yang, S. Y.; Zheng, J. PEGylation and zwitterionization: Pros and cons in the renal clearance and tumor targeting of Near-IR-Emitting gold nanoparticles. Angew. Chem., Int. Ed. 2013, 52, 12572–12576.CrossRefGoogle Scholar
  24. [24]
    Phillips, E. H.; Peñate-Medina, O.; Zanzonico, P. B.; Carvajal, R. D.; Mohan, P.; Ye, Y. P.; Humm, J.; Gönen, M.; Kalaigian, H.; Schöder, H. et al. Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Transl. Med. 2014, 6, 260ra149.CrossRefGoogle Scholar
  25. [25]
    Zhou, M.; Li, J. J.; Liang, S.; Sood, A. K.; Liang, D.; Li, C. CuS nanodots with ultrahigh efficient renal clearance for positron emission tomography imaging and image-guided photothermal therapy. ACS Nano 2015, 9, 7085–7096.CrossRefGoogle Scholar
  26. [26]
    Yu, M. X.; Zhou, J. C.; Du, B. J.; Ning, X. H.; Authement, C.; Gandee, L.; Kapur, P.; Hsieh, J. T.; Zheng, J. Noninvasive staging of kidney dysfunction enabled by renal-clearable luminescent gold nanoparticles. Angew. Chem., Int. Ed. 2016, 55, 2787–2791.CrossRefGoogle Scholar
  27. [27]
    Miao, Q. Q.; Xie, C.; Zhen, X.; Lyu, Y.; Duan, H. W.; Liu, X. G.; Jokerst, J. V.; Pu, K. Y. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 2017, 35, 1102–1110.Google Scholar
  28. [28]
    Jiang, Y. Y.; Pu, K. Y. Multimodal biophotonics of semiconducting polymer nanoparticles. Acc. Chem. Res. 2018, 51, 1840–1849.CrossRefGoogle Scholar
  29. [29]
    Phelps, M. E. Positron emission tomography provides molecular imaging of biological processes. Proc. Natl. Acad. Sci. USA 2000, 97, 9226–9233.CrossRefGoogle Scholar
  30. [30]
    Gambhir, S. S. Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer 2002, 2, 683–693.CrossRefGoogle Scholar
  31. [31]
    Ide, T.; Sasaki, T.; Maeda, K.; Higuchi, S.; Sugiyama, Y.; Ieiri, I. Quantitative population pharmacokinetic analysis of pravastatin using an enterohepatic circulation model combined with pharmacogenomic Information on SLCO1B1 and ABCC2 polymorphisms. J. Clin. Pharmacol. 2009, 49, 1309–1317.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dawei Jiang
    • 1
    • 2
  • Hyung-Jun Im
    • 1
    • 3
  • Madeline E. Boleyn
    • 1
    • 4
  • Christopher G. England
    • 1
  • Dalong Ni
    • 1
  • Lei Kang
    • 1
    • 5
  • Jonathan W. Engle
    • 1
  • Peng Huang
    • 2
    Email author
  • Xiaoli Lan
    • 6
    Email author
  • Weibo Cai
    • 1
    Email author
  1. 1.Departments of Radiology and Medical PhysicsUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Carson International Cancer Center, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science CenterShenzhen UniversityShenzhenChina
  3. 3.Graduate School of Convergence Science and TechnologySeoul National UniversitySeoulRepublic of Korea
  4. 4.Departments of Mathematics, and BiologyUniversity of Wisconsin-MadisonWisconsinUSA
  5. 5.Department of Nuclear MedicinePeking University First HospitalBeijingChina
  6. 6.Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyHubei Key Laboratory of Molecular ImagingWuhanChina

Personalised recommendations