Advertisement

Nanorattle Au@PtAg encapsulated in ZIF-8 for enhancing CO2 photoreduction to CO

  • Yuqun Su
  • Haitao Xu
  • Jiajia Wang
  • Xikuo Luo
  • Zhen-liang Xu
  • Kefu Wang
  • Wenzhong Wang
Research Article
  • 37 Downloads

Abstract

Imidazolate-based ZIF-8 catalysts M@ZIF-8 (M = Au NR, Au@Ag NR, or Au@PtAg NRT; NR = nanorod, NRT = nanorattle), were assembled. Au NRs acted as the core for the epitaxial growth of the Ag shell, and oxidative etching of Au@Ag NRs led to Au@PtAg NRTs with K2PtCl4 aqueous solution. All metal nanorods (MNRs) and metal nanorattles (MNRTs) were well dispersed and fully encapsulated in ZIF-8. Au@PtAg NRTs encapsulated in ZIF-8 could lead to enhanced stability and selectivity for catalytic applications, combining the advantages of ZIF-8 (tailorable porosity) with the high surface area and improved optical sensitivity of rod-shaped NRTs. The catalyst Au@PtAg@ZIF-8 exhibited efficient catalytic activity and CO selectivity for the gas-phase photoreduction of CO2 with H2O.

Keywords

imidazolate-based ZIF-8 core–shell nanorattle noble metal catalyst CO2 photoreduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 21371058).

Supplementary material

12274_2018_2269_MOESM1_ESM.pdf (10.5 mb)
Nanorattle Au@PtAg encapsulated in ZIF-8 for enhancing CO2 photoreduction to CO

References

  1. [1]
    Zheng, G. C.; de Marchi, S.; López-Puente, V.; Sentosun, K.; Polavarapu, L.; Pérez-Juste, I.; Hill, E. H.; Bals, S.; Liz-Marzán, L. M.; Pastoriza-Santos, I. et al. Encapsulation of single plasmonic nanoparticles within ZIF-8 and SERS analysis of the MOF flexibility. Small 2016, 12, 3935–3943.CrossRefGoogle Scholar
  2. [2]
    Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metalorganic framework material by controlled nanoparticle encapsulation. Nature Chem. 2012, 4, 310–316.CrossRefGoogle Scholar
  3. [3]
    Liu, Y. L.; Tang, Z. Y. Multifunctional nanoparticle@MOF core-shell nanostructures. Adv. Mater. 2013, 25, 5819–5825.CrossRefGoogle Scholar
  4. [4]
    Long, Y. K.; Xiao, L.; Cao, Q. H.; Shi, X. W.; Wang, Y. N. Efficient incorporation of diverse components into metal organic frameworks via metal phenolic networks. Chem. Commun. 2017, 53, 10831–10834.CrossRefGoogle Scholar
  5. [5]
    Zeng, M.; Chai, Z. G.; Deng, X.; Li, Q.; Feng, S. Q.; Wang, J.; Xu, D. S. Core–shell CdS@ZIF-8 structures for improved selectivity in photocatalytic H2 generation from formic acid. Nano Res. 2016, 9, 2729–2734.CrossRefGoogle Scholar
  6. [6]
    Chen, L. Y.; Luque, R.; Li, Y. W. Controllable design of tunable nanostructures inside metal-organic frameworks. Chem. Soc. Rev. 2017, 46, 4614–4630.CrossRefGoogle Scholar
  7. [7]
    Zheng, G. C.; Chen, Z. W.; Sentosun, K.; Pérez-Juste, I.; Bals, S.; Liz-Marzán, L. M.; Pastoriza-Santos, I.; Pérez-Juste, J.; Hong, M. Shape control in ZIF-8 nanocrystals and metal nanoparticles@ZIF-8 heterostructures. Nanoscale 2017, 9, 16645–16651.CrossRefGoogle Scholar
  8. [8]
    Ahmed, I.; Jhung, S. H. Composites of metal–organic frameworks: Preparation and application in adsorption. Mater. Today 2014, 17, 136–146.CrossRefGoogle Scholar
  9. [9]
    Lin, L.; Liu, H. O.; Zhang, X. F. ZnO-template synthesis of rattle-type catalysts with supported Pd nanoparticles encapsulated in hollow ZIF-8 for liquid hydrogenation. Chem. Eng. J. 2017, 328, 124–132.CrossRefGoogle Scholar
  10. [10]
    Hu, Y. L.; Liao, J.; Wang, D. M.; Li, G. K. Fabrication of gold nanoparticleembedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. Anal. Chem. 2014, 86, 3955–3963.CrossRefGoogle Scholar
  11. [11]
    Sun, D. R.; Li, Z. H. Double-solvent method to Pd nanoclusters encapsulated inside the cavity of NH2–Uio-66(Zr) for efficient visible-light-promoted suzuki coupling reaction. J. Phys. Chem. C 2016, 120, 19744–19750.CrossRefGoogle Scholar
  12. [12]
    Férey, G.; Latroche, M.; Serre, C.; Millange, F.; Loiseau, T.; Percheron-Guégan, A. Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C–C6H4–CO2) (M = Al3+, Cr3+), MIL-53. Chem. Commun. 2003, 2976–2977.Google Scholar
  13. [13]
    Kitaura, R.; Fujimoto, K.; Noro, S. I.; Kondo, M.; Kitagawa, S. A pillared-layer coordination polymer network displaying hysteretic sorption: [Cu2(pzdc)2(dpyg)]n (pzdc = pyrazine-2,3-dicarboxylate; dpyg = 1, 2-di(4- pyridyl)glycol). Angew. Chem., Int. Ed. 2002, 41, 133–135.CrossRefGoogle Scholar
  14. [14]
    Foo, M. L.; Matsuda, R.; Kitagawa, S. Functional hybrid porous coordination polymers. Chem. Mater. 2014, 26, 310–322.CrossRefGoogle Scholar
  15. [15]
    Zhou, H.; Li, P.; Liu, J.; Chen, Z. P.; Liu, L. Q.; Dontsova, D.; Yan, R. Y.; Fan, T. X.; Zhang, D.; Ye, J. H. Biomimetic polymeric semiconductor based hybrid nanosystems for artificial photosynthesis towards solar fuels generation via CO2 reduction. Nano Energy 2016, 25, 128–135.CrossRefGoogle Scholar
  16. [16]
    Doherty, C. M.; Buso, D.; Hill, A. J.; Furukawa, S.; Kitagawa, S.; Falcaro, P. Using functional nano- and microparticles for the preparation of metal–organic framework composites with novel properties. Acc. Chem. Res. 2014, 47, 396–405.CrossRefGoogle Scholar
  17. [17]
    Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714.CrossRefGoogle Scholar
  18. [18]
    Yurtsever, H. A.; Akgunlu, M. Y.; Kurt, T.; Yurttaş, A. S.; Topuz, B. Photocatalytic activities of Ag+ doped ZIF-8 and ZIF-L crystals. JOTCSA. 2016, 3, 265–280.Google Scholar
  19. [19]
    Fu, Y. H.; Sun, D. R.; Chen, Y. J.; Huang, R. K.; Ding, Z. X.; Fu, X. Z.; Li, Z. H. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem., Int. Ed. 2012, 51, 3364–3367.CrossRefGoogle Scholar
  20. [20]
    Lykourinou, V.; Chen, Y.; Wang, X. S.; Meng, L.; Hoang, T.; Ming, L. J.; Musselman, R. L.; Ma, S. Q. Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@mesoMOF: A new platform for enzymatic catalysis. J. Am. Chem. Soc. 2011, 133, 10382–10385.CrossRefGoogle Scholar
  21. [21]
    Wang, C.; de Krafft, K. E.; Lin, W. B. Pt nanoparticles@photoactive metal-organic frameworks: Efficient hydrogen evolution via synergistic photoexcitation and electron injection. J. Am. Chem. Soc. 2012, 134, 7211–7214.CrossRefGoogle Scholar
  22. [22]
    Kuo, C. H.; Tang, Y.; Chou, L. Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z. P.; Tsung, C. K. Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. J. Am. Chem. Soc. 2012, 134, 14345–14348.CrossRefGoogle Scholar
  23. [23]
    Dhakshinamoorthy, A.; Garcia, H. Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chem. Soc. Rev. 2012, 41, 5262–5284.CrossRefGoogle Scholar
  24. [24]
    Sugikawa, K.; Nagata, S.; Furukawa, Y.; Kokado, K.; Sada, K. Stable and functional gold nanorod composites with a metal–organic framework crystalline shell. Chem. Mater. 2013, 25, 2565–2570.CrossRefGoogle Scholar
  25. [25]
    Liu, Y. Y.; Zhang, W. N.; Li, S. Z.; Cui, C. L.; Wu, J.; Chen, H. Y.; Huo, F. W. Designable yolk–shell nanoparticle@MOF petalous heterostructures. Chem. Mater. 2014, 26, 1119–1125.CrossRefGoogle Scholar
  26. [26]
    Na, K.; Choi, K. M.; Yaghi, O. M.; Somorjai, G. A. Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. Nano Lett. 2014, 14, 5979–5983.CrossRefGoogle Scholar
  27. [27]
    Sugikawa, K.; Furukawa, Y.; Sada, K. SERS-active metal–organic frameworks embedding gold nanorods. Chem. Mater. 2011, 23, 3132–3134.CrossRefGoogle Scholar
  28. [28]
    Lingampalli, S. R.; Ayyub, M. M.; Rao, C. N. R. Recent progress in the photocatalytic reduction of carbon dioxide. ACS Omega 2017, 2, 2740–2748.CrossRefGoogle Scholar
  29. [29]
    Zhai, Q. G.; Xie, S. J.; Fan, W. Q.; Zhang, Q. H.; Wang, Y.; Deng, W. P.; Wang, Y. Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper(I) oxide co-catalysts with a core-shell structure. Angew. Chem., Int. Ed. 2013, 52, 5776–5779.CrossRefGoogle Scholar
  30. [30]
    In, S. I.; Vaughn II, D. D.; Schaak, R. E. Hybrid CuO-TiO2–XNX hollow nanocubes for photocatalytic conversion of CO2 into methane under solar irradiation. Angew. Chem., Int. Ed. 2012, 124, 3981–3984.CrossRefGoogle Scholar
  31. [31]
    Liu, Q.; Low, Z. X.; Li, L. X.; Razmjou, A.; Wang, K.; Yao, J. F.; Wang, H. T. ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. J. Mater. Chem. A 2013, 1, 11563–11569.CrossRefGoogle Scholar
  32. [32]
    Li, R.; Hu, J. H.; Deng, M. S.; Wang, H. L.; Wang, X. J.; Hu, Y. L.; Jiang, H. L.; Jiang, J.; Zhang, Q.; Xie, Y. et al. Integration of an inorganic semiconductor with a metal-organic framework: A platform for enhanced gaseous photocatalytic reactions. Adv. Mater. 2014, 26, 4783–4788.CrossRefGoogle Scholar
  33. [33]
    Xie, S. J.; Wang, Y.; Zhang, Q. H.; Deng, W. P.; Wang, Y. MgO- and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. ACS Catal. 2014, 4, 3644–3653.CrossRefGoogle Scholar
  34. [34]
    Wang, K. F.; Zhang, L.; Su, Y.; Shao, D. K.; Zeng, S. W.; Wang, W. Z. Photoreduction of carbon dioxide of atmospheric concentration to methane with water over CoAl-layered double hydroxide nanosheets. J. Mater. Chem. A 2018, 6, 8366–8373.CrossRefGoogle Scholar
  35. [35]
    Dong, C. Y.; Lian, C.; Hu, S. C.; Deng, Z. S.; Gong, J. Q.; Li, M. D.; Liu, H. L.; Xing, M. Y.; Zhang, J. L. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 2018, 9, 1252.CrossRefGoogle Scholar
  36. [36]
    He, T.; Chen, S. M.; Ni, B.; Gong, Y.; Wu, Z.; Song, L.; Gu, L.; Hu, W. P.; Wang, X. Zirconium–porphyrin-based metal–organic framework hollow nanotubes for immobilization of noble-metal single atoms. Angew. Chem., Int. Ed. 2018, 130, 3551–3556.CrossRefGoogle Scholar
  37. [37]
    Zhang, H. B.; Wei, J.; Dong, J. C.; Liu, G. G.; Shi, L.; An, P. F.; Zhao, G. X.; Kong, J. T.; Wang, X. J.; Meng, X. G. et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem., Int. Ed. 2016, 55, 14310–14314.CrossRefGoogle Scholar
  38. [38]
    Chen, M. M.; Han, L.; Zhou, J.; Sun, C. Y; Hu, C. Y.; Wang, X. L.; Su, Z. M. Photoreduction of carbon dioxide under visible light by ultra-small Ag nanoparticles doped into Co-ZIF-9. Nanotechnology 2018, 29, 284003.CrossRefGoogle Scholar
  39. [39]
    Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.CrossRefGoogle Scholar
  40. [40]
    Kumar, B.; Llorente, M.; Froehlich, J.; Dang, T.; Sathrum, A.; Kubiak, C. P. Photochemical and photoelectrochemical reduction of CO2. Annu. Rev. Phys. Chem. 2012, 63, 541–569.CrossRefGoogle Scholar
  41. [41]
    Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H. Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ. Sci. 2012, 5, 9217.CrossRefGoogle Scholar
  42. [42]
    Mori, K.; Yamashita, H.; Anpo, M. Photocatalytic reduction of CO2 with H2O on various titanium oxide photocatalysts. RSC Advances 2012, 2, 3165.CrossRefGoogle Scholar
  43. [43]
    Tahir, M.; Tahir, B.; Amin, N. A. S. Synergistic effect in plasmonic Au/Ag alloy NPs co-coated TiO2 NWs toward visible-light enhanced CO2 photoreduction to fuels. Appl. Catal. B 2017, 204, 548–560.CrossRefGoogle Scholar
  44. [44]
    Zhu, W.; Liu, P. J.; Xiao, S. N.; Wang, W. C.; Zhang, D. Q.; Li, H. X. Microwave-assisted synthesis of Ag-doped MOFs-like organotitanium polymer with high activity in visible-light driven photocatalytic NO oxidization. Appl. Catal. B: Envion 2015, 172–173, 46–51.CrossRefGoogle Scholar
  45. [45]
    Yu, S. J.; Wilson, A. J.; Kumari, G.; Zhang, X. Q.; Jain, P. K. Opportunities and challenges of solar-energy-driven carbon dioxide to fuel conversion with plasmonic catalysts. ACS Energy Lett. 2017, 2, 2058–2070.CrossRefGoogle Scholar
  46. [46]
    Yu, S. J.; Wilson, A. J.; Heo, J.; Jain, P. K. Plasmonic control of multielectron transfer and C–C coupling in visible-light-driven CO2 reduction on Au nanoparticles. Nano Lett. 2018, 18, 2189–2194.CrossRefGoogle Scholar
  47. [47]
    Wang, W. N.; An, W. J.; Ramalingam, B.; Mukherjee, S.; Niedzwiedzki, D. M.; Gangopadhyay, S.; Biswas, P. Size and structure matter: Enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J. Am. Chem. Soc. 2012, 134, 11276–11281.CrossRefGoogle Scholar
  48. [48]
    Zhu, W.; Chen, Z.; Pan, Y.; Dai, R. Y.; Wu, Y.; Zhuang, Z. B.; Wang, D. S.; Peng, Q.; Chen, C.; Li, Y. D. Functionalization of hollow nanomaterials for catalytic applications: Nanoreactor construction. Adv. Mater., in press, DOI: 10.1002/adma.201800426.Google Scholar
  49. [49]
    Park, J.; Wang, H. L.; Vara, M.; Xia, Y. N. Platinum cubic nanoframes with enhanced catalytic activity and durability toward oxygen reduction. ChemSusChem 2016, 9, 2855–2861.CrossRefGoogle Scholar
  50. [50]
    Xu, J. J.; Liu, J. W.; Che, R. C.; Liang, C. Y.; Cao, M. S.; Li, Y.; Liu, Z. W. Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells. Nanoscale 2014, 6, 5782–5790.CrossRefGoogle Scholar
  51. [51]
    Londono-Calderon, A.; Campos-Roldan, C. A.; González-Huerta, R. G.; Hernandez-Pichardo, M. L.; del Angel, P.; Yacaman, M. J. Influence of the architecture of Au–Ag–Pt nanoparticles on the electrocatalytic activity for hydrogen evolution reaction. Int. J. Hydrogen Energy 2017, 42, 30208–30215.CrossRefGoogle Scholar
  52. [52]
    Yan, N.; Chen, Q. W.; Wang, F.; Wang, Y.; Zhong, H.; Hu, L. High catalytic activity for CO oxidation of Co3O4 nanoparticles in SiO2 nanocapsules. J. Mater. Chem. A 2013, 1, 637–643.CrossRefGoogle Scholar
  53. [53]
    Mehdinia, A.; Jebeliyan, M.; Kayyal, T. B.; Jabbari, A. Rattle-type Fe3O4@SnO2 core-shell nanoparticles for dispersive solid-phase extraction of mercury Ions. Microchim. Acta 2016, 184, 707–713.CrossRefGoogle Scholar
  54. [54]
    Zhou, J. B.; Tang, C.; Cheng, B.; Yu, J. G.; Jaroniec, M. Rattle-type carbon-alumina core-shell spheres: Synthesis and application for adsorption of organic dyes. ACS Appl. Mater. Interfaces 2012, 4, 2174–2179.CrossRefGoogle Scholar
  55. [55]
    El-Toni, A. M.; Habila, M. A.; Labis, J. P.; ALOthman, Z. A.; Alhoshan, M.; Elzatahry, A. A.; Zhang, F. Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures. Nanoscale 2016, 8, 2510–2531.CrossRefGoogle Scholar
  56. [56]
    Wang, M. W.; Boyjoo, Y.; Pan, J.; Wang, S. B.; Liu, J. Advanced yolk-shell nanoparticles as nanoreactors for energy conversion. Chin. J. Catal. 2017, 38, 970–990.CrossRefGoogle Scholar
  57. [57]
    Park, J. C.; Song, H. Metal@silica yolk-shell nanostructures as versatile bifunctional nanocatalysts. Nano Res. 2010, 4, 33–49.CrossRefGoogle Scholar
  58. [58]
    Liu, K. K.; Tadepalli, S.; Tian, L. M.; Singamaneni, S. Size-dependent surface enhanced Raman scattering activity of plasmonic nanorattles. Chem. Mater. 2015, 27, 5261–5270.CrossRefGoogle Scholar
  59. [59]
    Cui, Z. M.; Chen, Z.; Cao, C. Y.; Jiang, L.; Song, W. G. A yolk–shell structured Fe2O3@mesoporous SiO2 nanoreactor for enhanced activity as a Fenton catalyst in total oxidation of dyes. Chem. Commun. 2013, 49, 2332–2334.CrossRefGoogle Scholar
  60. [60]
    Hu, K. W.; Liu, T. M.; Chung, K. Y.; Huang, K. S.; Hsieh, C. T.; Sun, C. K.; Yeh, C. S. Efficient near-IR hyperthermia and intense nonlinear optical imaging contrast on the gold nanorod-in-shell nanostructures. J. Am. Chem. Soc. 2009, 131, 14186–14187.CrossRefGoogle Scholar
  61. [61]
    Khalavka, Y.; Becker, J.; Sönnichsen, C. Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity. J. Am. Chem. Soc. 2009, 131, 1871–1875.CrossRefGoogle Scholar
  62. [62]
    Cobley, C. M.; Xia, Y. N. Engineering the properties of metal nanostructures via galvanic replacement reactions. Mater. Sci. Eng. R 2010, 70, 44–62.CrossRefGoogle Scholar
  63. [63]
    Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.CrossRefGoogle Scholar
  64. [64]
    Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Ligand-directed strategy for zeolite-type metal–organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem., Int. Ed. 2006, 118, 1587–1589.CrossRefGoogle Scholar
  65. [65]
    Manna, K.; Zhang, T.; Greene, F. X.; Lin, W. B. Bipyridine- and phenanthroline-based metal–organic frameworks for highly efficient and tandem catalytic organic transformations via directed C–H activation. J. Am. Chem. Soc. 2015, 137, 2665–2673.CrossRefGoogle Scholar
  66. [66]
    Zhang, H. B.; Ma, Z. J.; Liu, G. G.; Shi, L.; Tang, J.; Pang, H.; Wu, K. C.; Takei, T.; Zhang, J.; Yamauchi, Y. et al. Highly active nonprecious metal hydrogen evolution electrocatalyst: Ultrafine molybdenum carbide nanoparticles embedded into a 3D nitrogen-implanted carbon matrix. NPG Asia Mater. 2016, 8, e293.CrossRefGoogle Scholar
  67. [67]
    Mankidy, B. D.; Joseph, B.; Gupta, V. K. Photo-conversion of CO2 using titanium dioxide: Enhancements by plasmonic and co-catalytic nanoparticles. Nanotechnology 2013, 24, 405402.CrossRefGoogle Scholar
  68. [68]
    Wang, S. B.; Guan, B. Y.; Lu, Y.; Wen, X.; Lou, D. Formation of hierarchical In2S3–CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction. J. Am. Chem. Soc. 2017, 139, 17305–17308.CrossRefGoogle Scholar
  69. [69]
    Feng, L. L.; Wu, X. C.; Ren, L. R.; Xiang, Y. J.; He, W. W.; Zhang, K.; Zhou, W. Y.; Xie, S. S. Well-controlled synthesis of Au@Pt nanostructures by gold-nanorod-seeded growth. Chem.—Eur. J. 2008, 14, 9764–9771.CrossRefGoogle Scholar
  70. [70]
    Sun, H. Y.; Guo, X.; Ye, W.; Kou, S. F.; Yang, J. Charge transfer accelerates galvanic replacement for PtAgAu nanotubes with enhanced catalytic activity. Nano Res. 2016, 9, 1173–1181.CrossRefGoogle Scholar
  71. [71]
    Wu, X. K.; Zhao, Y. R.; Yang, C. Q.; He, G. F. PVP-assisted synthesis of shape-controlled CuFeS2 nanocrystals for Li-ion batteries. J. Mater. Sci. 2015, 50, 4250–4257.CrossRefGoogle Scholar
  72. [72]
    Koczkur, K. M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S. E. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 2015, 44, 17883–17905.CrossRefGoogle Scholar
  73. [73]
    Zhou, J. J.; Wang, P.; Wang, C. X.; Goh, Y. T.; Fang, Z.; Messersmith, P. B.; Duan, H. W. Versatile core–shell nanoparticle@metal–organic framework nanohybrids: Exploiting mussel-inspired polydopamine for tailored structural integration. ACS Nano 2015, 9, 6951–6960.CrossRefGoogle Scholar
  74. [74]
    Zhou, H.; Guo, J. J.; Li, P.; Fan, T. X.; Zhang, D.; Ye, J. H. Leafarchitectured 3D hierarchical artificial photosynthetic system of perovskite titanates towards CO2 photoreduction into hydrocarbon fuels. Sci. Rep. 2013, 3, 1667.CrossRefGoogle Scholar
  75. [75]
    Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196.CrossRefGoogle Scholar
  76. [76]
    Kočí, K.; Obalová, L.; Matějová, L.; Plachá, D.; Lacný, Z.; Jirkovský, J.; Šolcová, O. Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl. Catal. B: Environ. 2009, 89, 494–502.CrossRefGoogle Scholar
  77. [77]
    Tan, S. S.; Zou, L. D.; Hu, E. Kinetic modelling for photosynthesis of hydrogen and methane through catalytic reduction of carbon dioxide with water vapour. Catal. Today 2008, 131, 125–129.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuqun Su
    • 1
  • Haitao Xu
    • 1
  • Jiajia Wang
    • 1
  • Xikuo Luo
    • 1
  • Zhen-liang Xu
    • 1
  • Kefu Wang
    • 2
  • Wenzhong Wang
    • 2
  1. 1.State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research CenterEast China University of Science and Technology (ECUST)ShanghaiChina
  2. 2.State Key Laboratory of High Performance Ceramics and Super Fine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina

Personalised recommendations