Biexciton Auger recombination in mono-dispersed, quantum-confined CsPbBr3 perovskite nanocrystals obeys universal volume-scaling

  • Yulu Li
  • Tao Ding
  • Xiao Luo
  • Zongwei Chen
  • Xue Liu
  • Xin LuEmail author
  • Kaifeng WuEmail author
Research Article


Auger recombination has been a long-standing obstacle to many prospective applications of colloidal quantum dots (QDs) ranging from lasing, light-emitting diodes to bio-labeling. As such, understanding the physical underpinnings and scaling laws for Auger recombination is essential to these applications. Previous studies of biexciton Auger recombination in various QDs established a universal scaling of biexciton lifetime (τXX) with QD volume (V ): τXX = γV. However, recent measurements on perovskite nanocrystals (NCs), an emerging class of enablers for light harvesting and emitting applications, showed significant deviations from this universal scaling law, likely because the measured NCs are weakly-confined and also have relatively broad size-distributions. Here we study biexciton Auger recombination in mono-dispersed (size distributions within 1.7%–9.0%), quantum-confined CsPbBr3 NCs (with confinement energy up to 410 meV) synthesized using a latest approach based on thermodynamic equilibrium control. Our measurements clearly reproduce the volume-scaling of τXX in confined CsPbBr3 QDs. However, the scaling factor γ (0.085 ± 0.001 ps/nm3) is one order of magnitude lower than that reported for CdSe and PbSe QDs (1.00 ± 0.05 ps/nm3), suggesting unique mechanisms enhancing Auger recombination rate in perovskite NCs.


perovskite nanocrystals Auger recombination biexciton volume-scaling ultrafast spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We gratefully acknowledge financial supports from the Ministry of Science and Technology of China (No. 2018YFA028703) and the National Natural Science Foundation of China (No. 21773239).

Supplementary material

12274_2018_2266_MOESM1_ESM.pdf (3.6 mb)
Biexciton Auger recombination in mono-dispersed, quantum-confined CsPbBr3 perovskite nanocrystals obeys universal volume-scaling


  1. [1]
    Landsberg, P. T. Recombination in Semiconductors; Cambridge University Press: Cambridge, UK, 2003.Google Scholar
  2. [2]
    Klimov, V. I.; Mikhailovsky, A. A.; McBranch, D. W.; Leatherdale, C. A.; Bawendi, M. G. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 2000, 287, 1011–1013.CrossRefGoogle Scholar
  3. [3]
    Robel, I.; Gresback, R.; Kortshagen, U.; Schaller, R. D.; Klimov, V. I. Universal size-dependent trend in Auger recombination in direct-gap and indirect-gap semiconductor nanocrystals. Phys. Rev. Lett. 2009, 102, 177404.CrossRefGoogle Scholar
  4. [4]
    Pandey, A.; Guyot-Sionnest, P. Multicarrier recombination in colloidal quantum dots. J. Chem. Phys. 2007, 127, 111104.CrossRefGoogle Scholar
  5. [5]
    Pietryga, J. M.; Park, Y. S.; Lim, J.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 2016, 116, 10513–10622.CrossRefGoogle Scholar
  6. [6]
    Fan, F. J.; Voznyy, O.; Sabatini, R. P.; Bicanic, K. T.; Adachi, M. M.; McBride, J. R.; Reid, K. R.; Park, Y. S.; Li, X. Y.; Jain, A. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 2017, 544, 75–79.CrossRefGoogle Scholar
  7. [7]
    Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H. J.; Bawendi, M. G. Optical gain and stimulated emission in nanocrystal quantum dots. Science 2000, 290, 314–317.CrossRefGoogle Scholar
  8. [8]
    Schaller, R. D.; Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 2004, 92, 186601.CrossRefGoogle Scholar
  9. [9]
    Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P. R.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 2005, 5, 865–871.CrossRefGoogle Scholar
  10. [10]
    Gao, J. B.; Fidler, A. F.; Klimov, V. I. Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots. Nat. Commun. 2015, 6, 8185.CrossRefGoogle Scholar
  11. [11]
    Bae, W. K.; Park, Y. S.; Lim, J.; Lee, D.; Padilha, L. A.; McDaniel, H.; Robel, I.; Lee, C.; Pietryga, J. M.; Klimov, V. I. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 2013, 4, 2661.CrossRefGoogle Scholar
  12. [12]
    Bae, W. K.; Brovelli, S.; Klimov, V. I. Spectroscopic insights into the performance of quantum dot light-emitting diodes. MRS Bull. 2013, 38, 721–730.CrossRefGoogle Scholar
  13. [13]
    Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 1996, 383, 802–804.CrossRefGoogle Scholar
  14. [14]
    Galland, C.; Ghosh, Y.; Steinbrück, A.; Sykora, M.; Hollingsworth, J. A.; Klimov, V. I.; Htoon, H. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 2011, 479, 203–207.CrossRefGoogle Scholar
  15. [15]
    Efros, A. L.; Nesbitt, D. J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 2016, 11, 661–671.CrossRefGoogle Scholar
  16. [16]
    Becker, M. A.; Vaxenburg, R.; Nedelcu, G.; Sercel, P. C.; Shabaev, A.; Mehl, M. J.; Michopoulos, J. G.; Lambrakos, S. G.; Bernstein, N.; Lyons, J. L. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 2018, 553, 189–193.CrossRefGoogle Scholar
  17. [17]
    Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750.CrossRefGoogle Scholar
  18. [18]
    Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.CrossRefGoogle Scholar
  19. [19]
    Makarov, N. S.; Guo, S. J.; Isaienko, O.; Liu, W. Y.; Robel, I.; Klimov, V. I. Spectral and dynamical properties of single excitons, Biexcitons, and Trions in cesium–lead-halide perovskite quantum dots. Nano Lett. 2016, 16, 2349–2362.CrossRefGoogle Scholar
  20. [20]
    Htoon, H.; Hollingsworth, J. A.; Dickerson, R.; Klimov, V. I. Effect of zeroto one-dimensional transformation on multiparticle Auger recombination in semiconductor quantum rods. Phys. Rev. Lett. 2003, 91, 227401.CrossRefGoogle Scholar
  21. [21]
    Padilha, L. A.; Stewart, J. T.; Sandberg, R. L.; Bae, W. K.; Koh, W. K.; Pietryga, J. M.; Klimov, V. I. Aspect ratio dependence of Auger recombination and carrier multiplication in PbSe Nanorods. Nano Lett. 2013, 13, 1092–1099.CrossRefGoogle Scholar
  22. [22]
    Li, Q. Y.; Lian, T. Q. Area- and thickness-dependent biexciton Auger recombination in colloidal CdSe nanoplatelets: Breaking the “universal volume scaling law”. Nano Lett. 2017, 17, 3152–3158.CrossRefGoogle Scholar
  23. [23]
    Dutta, A.; Dutta, S. K.; Das Adhikari, S.; Pradhan, N. Tuning the size of CsPbBr3 nanocrystals: All at one constant temperature. ACS Energy Lett. 2018, 3, 329–334.CrossRefGoogle Scholar
  24. [24]
    Almeida, G.; Goldoni, L.; Akkerman, Q.; Dang, Z. Y.; Khan, A. H.; Marras, S.; Moreels, I.; Manna, L. Role of acid–base equilibria in the size, shape, and phase control of cesium lead bromide nanocrystals. ACS Nano 2018, 12, 1704–1711.CrossRefGoogle Scholar
  25. [25]
    Chen, J. S.; Žídek, K.; Chábera, P.; Liu, D. Z.; Cheng, P. F.; Nuuttila, L.; Al-Marri, M. J.; Lehtivuori, H.; Messing, M. E.; Han, K. L. et al. Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots. J. Phys. Chem. Lett. 2017, 8, 2316–2321.CrossRefGoogle Scholar
  26. [26]
    Castañeda, J. A.; Nagamine, G.; Yassitepe, E.; Bonato, L. G.; Voznyy, O.; Hoogland, S.; Nogueira, A. F.; Sargent, E. H.; Cruz, C. H. B.; Padilha, L. A. Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement. ACS Nano 2016, 10, 8603–8609.CrossRefGoogle Scholar
  27. [27]
    Maes, J.; Balcaen, L.; Drijvers, E.; Zhao, Q.; De Roo, J.; Vantomme, A.; Vanhaecke, F.; Geiregat, P.; Hens, Z. Light absorption coefficient of CsPbBr3 perovskite nanocrystals. J. Phys. Chem. Lett. 2018, 9, 3093–3097.CrossRefGoogle Scholar
  28. [28]
    Brennan, M. C.; Zinna, J.; Kuno, M. Existence of a size-dependent stokes shift in CsPbBr3 perovskite nanocrystals. ACS Energy Lett. 2017, 2, 1487–1488.CrossRefGoogle Scholar
  29. [29]
    Brennan, M. C.; Herr, J. E.; Nguyen-Beck, T. S.; Zinna, J.; Draguta, S.; Rouvimov, S.; Parkhill, J.; Kuno, M. Origin of the size-dependent stokes shift in CsPbBr3 perovskite nanocrystals. J. Am. Chem. Soc. 2017, 139, 12201–12208.CrossRefGoogle Scholar
  30. [30]
    Dong, Y. T.; Qiao, T.; Kim, D.; Parobek, D.; Rossi, D.; Son, D. H. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 2018, 18, 3716–3722.CrossRefGoogle Scholar
  31. [31]
    Cottingham, P.; Brutchey, R. L. On the crystal structure of colloidally prepared CsPbBr3 quantum dots. Chem. Commun. 2016, 52, 5246–5249.CrossRefGoogle Scholar
  32. [32]
    Wu, K. F.; Liang, G. J.; Shang, Q. Y.; Ren, Y. P.; Kong, D. G.; Lian, T. Q. Ultrafast interfacial electron and hole transfer from CsPbBr3 perovskite quantum dots. J. Am. Chem. Soc. 2015, 137, 12792–12795.CrossRefGoogle Scholar
  33. [33]
    Koscher, B. A.; Swabeck, J. K.; Bronstein, N. D.; Alivisatos, A. P. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J. Am. Chem. Soc. 2017, 139, 6566–6569.CrossRefGoogle Scholar
  34. [34]
    Wang, J. H.; Ding, T.; Leng, J.; Jin, S. Y.; Wu, K. F. “Intact” carrier doping by pump–pump–probe spectroscopy in combination with interfacial charge transfer: A case study of CsPbBr3 nanocrystals. J. Phys. Chem. Lett. 2018, 9, 3372–3377.CrossRefGoogle Scholar
  35. [35]
    Klimov, V. I. Multicarrier interactions in semiconductor nanocrystals in relation to the phenomena of Auger recombination and carrier multiplication. Annu. Rev. Condens. Matter Phys. 2014, 5, 285–316.CrossRefGoogle Scholar
  36. [36]
    Mondal, N.; Samanta, A. Complete ultrafast charge carrier dynamics in photo-excited all-inorganic perovskite nanocrystals (CsPbX3). Nanoscale 2017, 9, 1878–1885.CrossRefGoogle Scholar
  37. [37]
    de Jong, E. M. L. D.; Yamashita, G.; Gomez, L.; Ashida, M.; Fujiwara, Y.; Gregorkiewicz, T. Multiexciton lifetime in all-inorganic CsPbBr3 perovskite nanocrystals. J. Phys. Chem. C 2017, 121, 1941–1947.CrossRefGoogle Scholar
  38. [38]
    Aneesh, J.; Swarnkar, A.; Kumar Ravi, V.; Sharma, R.; Nag, A.; Adarsh, K. V. Ultrafast exciton dynamics in colloidal CsPbBr3 perovskite nanocrystals: Biexciton effect and Auger recombination. J. Phys. Chem. C 2017, 121, 4734–4739.CrossRefGoogle Scholar
  39. [39]
    Yarita, N.; Tahara, H.; Ihara, T.; Kawawaki, T.; Sato, R.; Saruyama, M.; Teranishi, T.; Kanemitsu, Y. Dynamics of charged excitons and Biexcitons in CsPbBr3 perovskite nanocrystals revealed by femtosecond transientabsorption and single-dot luminescence spectroscopy. J. Phys. Chem. Lett. 2017, 8, 1413–1418.CrossRefGoogle Scholar
  40. [40]
    Eperon, G. E.; Jedlicka, E.; Ginger, D. S. Biexciton Auger recombination differs in hybrid and inorganic halide perovskite quantum dots. J. Phys. Chem. Lett. 2018, 9, 104–109.CrossRefGoogle Scholar
  41. [41]
    Efros, A. L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D. J.; Bawendi, M. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. Phys. Rev. B 1996, 54, 4843–4856.CrossRefGoogle Scholar
  42. [42]
    Park, Y. S.; Guo, S. J.; Makarov, N. S.; Klimov, V. I. Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano 2015, 9, 10386–10393.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departmental of Chemistry, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
  2. 2.State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations