Nano Research

, Volume 12, Issue 3, pp 607–618 | Cite as

N-doped-carbon coated Ni2P-Ni sheets anchored on graphene with superior energy storage behavior

  • Yuanxing Zhang
  • Li SunEmail author
  • Liqi Bai
  • Haochen Si
  • Yu Zhang
  • Yihe ZhangEmail author
Research Article


Transition metal phosphides (TMPs) have been widely studied as electrode materials for supercapacitors and lithium-ion batteries due to their high electrochemical reaction activities. The practical application of TMPs was generally hampered by their low conductivity and large volume changes during electrochemical reactions. In this work, nitrogen-doped-carbon (NC) coated Ni2P-Ni hybrid sheets were fabricated and loaded into highly conductive graphene network, forming a Ni2P-Ni@NC@G composite. The highly conductive graphene, the NC coating layer, and the decorated Ni nanoparticles in combination offer continuous electron transport channels in the composite, resulting with facilitated electrode reaction kinetics and superior rate performance. Besides, the flexible graphene sheets and well-decorated Ni particles among Ni2P can effectively buffer the harmful stress during electrochemical reactions to maintain an integrated electrode structure. With these favorable features, the composite demonstrated superior capacitive and lithium storage behavior. As an electrode material for supercapacitors, the composite shows a remarkable capacitance of 2,335.5 F·g−1 at 1 A·g−1 and high capacitance retention of 86.4% after 2,000 cycles. Asymmetrical supercapacitors (ASCs) were also prepared with remarkable energy density of 53.125 Whk·g−1 and power density of 3,750 Whk·g−1. As an anode for lithium ion batteries, a high reversible capacity of 1,410 mAh·g−1 can be delivered at 0.2 A·g−1 after 200 cycles. Promising high rate capability was also demonstrated with a high discharge capacity of 750 mAh·g−1 at 8 A·g−1. This work shall pave the way for the production of other TMP materials for energy storage systems.


nickel phosphide graphene nitrogen-doped carbon asymmetric supercapacitors lithium ion batteries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Fundamental Research Funds for the Central Universities of China (Nos. 2652017401 and 2652015425) and the National Natural Science Foundation of China (No. 51572246).

Supplementary material

12274_2018_2265_MOESM1_ESM.pdf (4.6 mb)
N-doped-carbon coated Ni2P-Ni sheets anchored on graphene with superior energy storage behavior


  1. [1]
    Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.CrossRefGoogle Scholar
  2. [2]
    Zhang, D. Y.; Zhang, Y. H.; Luo, Y. S.; Zhang, Y.; Li, X. W.; Yu, X. L.; Ding, H.; Chu, P. K.; Sun, L. High-performance asymmetrical supercapacitor composed of rGO-enveloped nickel phosphite hollow spheres and N/S co-doped rGO aerogel. Nano Res. 2018, 11, 1651–1663.CrossRefGoogle Scholar
  3. [3]
    Wu, C.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk–shell-like nanostructural design. Adv. Mater. 2017, 29, 1604015.CrossRefGoogle Scholar
  4. [4]
    Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.CrossRefGoogle Scholar
  5. [5]
    Si, W. P.; Yan, C. L.; Chen, Y.; Oswald, S.; Han, L. Y.; Schmidt, O. G. On Chip, All solid-state and flexible micro-supercapacitors with high performance based on MnOx/Au multilayers. Energy Environ. Sci. 2013, 6, 3218–3223.CrossRefGoogle Scholar
  6. [6]
    Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 2008, 130, 2730–2731.CrossRefGoogle Scholar
  7. [7]
    Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 2006, 5, 987–994.CrossRefGoogle Scholar
  8. [8]
    Sun, H. H.; Ma, Z.; Qiu, Y. F.; Liu, H.; Gao, G. G. Ni@NiO nanowires on nickel foam prepared via “acid hungry” strategy: High supercapacitor performance and robust electrocatalysts for water splitting reaction. Small 2018, 14, 1800294.CrossRefGoogle Scholar
  9. [9]
    Wang, Y. P.; Pan, A. Q.; Zhang, Y. F.; Shi, J. R.; Lin, J. D.; Liang, S. Q.; Cao, G. Z. Heterogeneous NiS/NiO multi-shelled hollow microspheres with enhanced electrochemical performances for hybrid-type asymmetric supercapacitors. J. Mater. Chem. A 2018, 6, 9153–9160.CrossRefGoogle Scholar
  10. [10]
    Seo, D. H.; Pineda, S.; Yick, S.; Bell, J.; Han, Z. J.; Ostrikov, K. Plasmaenabled sustainable elemental lifecycles: Honeycomb-derived graphenes for next-generation biosensors and supercapacitors. Green Chem. 2015, 17, 2164–2171.CrossRefGoogle Scholar
  11. [11]
    Wang, X. J.; Chen, K.; Wang, G.; Liu, X. J.; Wang, H. Rational design of three-dimensional graphene encapsulated with hollow FeP@carbon nanocomposite as outstanding anode material for lithium ion and sodium ion batteries. ACS Nano 2017, 11, 11602–11616.CrossRefGoogle Scholar
  12. [12]
    Li, Z. Q.; Zhang, L. Y.; Ge, X. L.; Li, C. X.; Dong, S. H.; Wang, C. X.; Yin, L. W. Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries. Nano Energy 2017, 32, 494–502.CrossRefGoogle Scholar
  13. [13]
    Zhu, P. P.; Zhang, Z.; Hao, S. J.; Zhang, B. W.; Zhao, P. F.; Yu, J.; Cai, J. X.; Huang, Y. Z.; Yang, Z. Y. Multi-channel FeP@C octahedra anchored on reduced graphene oxide nanosheet with efficient performance for lithium-ion batteries. Carbon 2018, 139, 477–485.CrossRefGoogle Scholar
  14. [14]
    Elshahawy, A. M.; Guan, C.; Li, X.; Zhang, H.; Hu, Y. T.; Wu, H. J.; Pennycook, S. J.; Wang, J. Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor. Nano Energy 2017, 39, 162–171.CrossRefGoogle Scholar
  15. [15]
    Pan, Y.; Chen, Y. J.; Lin, Y.; Cui, P. X.; Sun, K. A.; Liu, Y. Q.; Liu, C. G. Cobalt nickel phosphide nanoparticles decorated carbon nanotubes as advanced hybrid catalysts for hydrogen evolution. J. Mater. Chem. A 2016, 4, 14675–14686.CrossRefGoogle Scholar
  16. [16]
    Lou, P. L.; Cui, Z. H.; Jia, Z. Q.; Sun, J. Y.; Tan, Y. B.; Guo, X. X. Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra-long-life anodes for reversible lithium storage. ACS Nano 2017, 11, 3705–3715.CrossRefGoogle Scholar
  17. [17]
    Bai, Y. J.; Zhang, H. J.; Fang, L.; Liu, L.; Qiu, H. J.; Wang, Y. Novel peapod array of Ni2P@graphitized carbon fiber composites growing on Ti substrate: A superior material for Li-ion batteries and the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 5434–5441.CrossRefGoogle Scholar
  18. [18]
    Huang, C.; Pi, C. R.; Zhang, X. M.; Ding, K.; Qin, P.; Fu, J. J.; Peng, X.; Gao, B.; Chu, P. K.; Huo, K. F. In situ synthesis of MoP nanoflakes intercalated N-doped graphene nanobelts from MoO3-amine hybrid for high-efficient hydrogen evolution reaction. Small 2018, 14, 1800667.CrossRefGoogle Scholar
  19. [19]
    Xu, Y. L.; Peng, B.; Mulder, F. M. A high-rate and ultrastable sodium ion anode based on a novel Sn4P3-P@graphene nanocomposite. Adv. Energy Mater. 2018, 8, 1701847.CrossRefGoogle Scholar
  20. [20]
    Ni, Y. H.; Jin, L. N.; Hong, J. M. Phase-controllable synthesis of nanosized nickel phosphides and comparison of photocatalytic degradation ability. Nanoscale 2011, 3, 196–200.CrossRefGoogle Scholar
  21. [21]
    Li, H.; Xu, S. M.; Yan, H.; Yang, L.; Xu, S. L. Cobalt phosphide composite encapsulated within N,P-doped carbon nanotubes for synergistic oxygen evolution. Small 2018, 14, 1800367.CrossRefGoogle Scholar
  22. [22]
    Wang, Y.; Kong, B.; Zhao, D. Y.; Wang, H. T.; Selomulya, C. Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 2017, 15, 26–55.CrossRefGoogle Scholar
  23. [23]
    Liu, S. D.; Sankar, K. V.; Kundu, A.; Ma, M.; Kwon, J. Y.; Jun, S. C. Honeycomb-like interconnected network of nickel phosphide heteronanoparticles with superior electrochemical performance for supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 21829–21838.CrossRefGoogle Scholar
  24. [24]
    Shi, S. S.; Li, Z. P.; Sun, Y.; Wang, B.; Liu, Q. N.; Hou, Y. L.; Huang, S. F.; Huang, J. Y.; Zhao, Y. F. A covalent heterostructure of monodisperse Ni2P immobilized on N, P-co-doped carbon nanosheets for high performance sodium/lithium storage. Nano Energy 2018, 48, 510–517.CrossRefGoogle Scholar
  25. [25]
    Lu, Y.; Tu, J. P.; Xiong, Q. Q.; Qiao, Y. Q.; Zhang, J.; Gu, C. D.; Wang, X. L.; Mao, S. X. Carbon-decorated single-crystalline Ni2P nanotubes derived from Ni nanowire templates: A high-performance material for Li-ion batteries. Chemistry 2012, 18, 6031–6038.CrossRefGoogle Scholar
  26. [26]
    Hou, S. J.; Xu, X. T.; Wang, M.; Xu, Y. Q.; Lu, T.; Yao, Y. F.; Pan, L. K. Carbon-incorporated janus-type Ni2P/Ni hollow spheres for high performance hybrid supercapacitors. J. Mater. Chem. A 2017, 5, 19054–19061.CrossRefGoogle Scholar
  27. [27]
    Wang, D.; Kong, L. B.; Liu, M. C.; Luo, Y. C.; Kang, L. An approach to preparing Ni-P with different phases for use as supercapacitor electrode materials. Chem.-Eur. J. 2015, 21, 17897–17903.CrossRefGoogle Scholar
  28. [28]
    Patil, B.; Ahn, S.; Yu, S.; Song, H.; Jeong, Y.; Kim, J. H.; Ahn, H. Electrochemical performance of a coaxial fiber-shaped asymmetric supercapacitor based on nanostructured MnO2/CNT-web paper and Fe2O3/ carbon fiber electrodes. Carbon 2018, 134, 366–375.CrossRefGoogle Scholar
  29. [29]
    Wang, D. T.; Wang, K.; Sun, L.; Wu, H. C.; Wang, J.; Zhao, Y. X.; Yan, L. J.; Luo, Y. F.; Jiang, K. L.; Li, Q. Q. et al. MnO2 nanoparticles anchored on carbon nanotubes with hybrid supercapacitor-battery behavior for ultrafast lithium storage. Carbon 2018, 139, 145–155.CrossRefGoogle Scholar
  30. [30]
    Sun, L.; Zhang, Y. X.; Zhang, Y.; Si, H. C.; Qin, W. P.; Zhang, Y. H. Reduced graphene oxide nanosheet modified NiMn-LDH nanoflake arrays for high-performance supercapacitors. Chem. Commun. 2018, 54, 10172–10175.CrossRefGoogle Scholar
  31. [31]
    Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, 61, 1527–1535.CrossRefGoogle Scholar
  32. [32]
    Zhu, Y. Q.; Cao, T.; Cao, C. B.; Ma, X. L.; Xu, X. Y.; Li, Y. D. A general synthetic strategy to monolayer graphene. Nano Res. 2018, 11, 3088–3095.CrossRefGoogle Scholar
  33. [33]
    Du, Z.; Ai, W.; Yang, J.; Gong, Y.; Yu, C.; Zhao, J.; Dong, X.; Sun, G.; Huang, W. In situ fabrication of Ni2P nanoparticles embedded in nitrogen and phosphorus co-doped carbon nanofibers as a superior anode for Li-ion batteries. ACS Sustain. Chem. Eng. 2018, 6, 14795–14801.CrossRefGoogle Scholar
  34. [34]
    Miao, X., Yin, R., Ge, X., Li, Z. Yin, L. Ni2P@carbon core-shell nanoparticlearched 3D interconnected graphene aerogel architectures as anodes for high-performance sodium-ion batteries. Small 2017, 13, 1–8.CrossRefGoogle Scholar
  35. [35]
    Tan, Y. M.; Xu, C. F.; Chen, G. X.; Liu, Z. H.; Ma, M.; Xie, Q. J.; Zheng, N. F.; Yao, S. Z. Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor. ACS Appl. Mater. Interfaces 2013, 5, 2241–2248.CrossRefGoogle Scholar
  36. [36]
    Li, J. B.; Yan, D.; Hou, S. J.; Lu, T.; Yao, Y. F.; Pan, L. K. Metal-organic frameworks converted flower-like hybrid with Co3O4 nanoparticles decorated on nitrogen-doped carbon sheets for boosted lithium storage performance. Chem. Eng. J. 2018, 354, 172–181.CrossRefGoogle Scholar
  37. [37]
    Wei, D. H.; Li, X. N.; Zhu, Y. C.; Liang, J. W.; Zhang, K. L.; Qian, Y. T. One-pot hydrothermal synthesis of peony-like Ag/Ag0.68V2O5 hybrid as high-performance anode and cathode materials for rechargeable lithium batteries. Nanoscale 2014, 6, 5239–5244.CrossRefGoogle Scholar
  38. [38]
    Cao, F. F.; Zhao, M. T.; Yu, Y. F.; Chen, B.; Huang, Y.; Yang, J.; Cao, X. H.; Lu, Q. P.; Zhang, X.; Zhang, Z. C. et al. Zhang, H. Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application. J. Am. Chem. Soc. 2016, 138, 6924–6927.CrossRefGoogle Scholar
  39. [39]
    Patiño, J.; López-Salas, N.; Gutiérrez, M. C.; Carriazo, D.; Ferrer, M. L.; del Monte, F. Phosphorus-doped carbon–carbon nanotube hierarchical monoliths as true three-dimensional electrodes in supercapacitor cells. J. Mater. Chem. A 2016, 4, 1251–1263.CrossRefGoogle Scholar
  40. [40]
    Zhang, Y. J.; Mori, T.; Ye, J. H.; Antonietti, M. Phosphorus-doped carbon nitride solid: Enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 2010, 132, 6294–6295.CrossRefGoogle Scholar
  41. [41]
    Chang, Y. N.; Zhang, G. X.; Han, B.; Li, H. Y.; Hu, C. J.; Pang, Y. C.; Chang, Z.; Sun, X. M. Polymer dehalogenation-enabled fast fabrication of N,S-codoped carbon materials for superior supercapacitor and deionization applications. ACS Appl. Mater. Interfaces 2017, 9, 29753–29759.CrossRefGoogle Scholar
  42. [42]
    Nam, S. H.; Shim, H. S.; Kim, Y. S.; Dar, M. A.; Kim, J. G.; Kim, W. B. Ag or Au nanoparticle-embedded one-dimensional composite TiO2 nanofibers prepared via electrospinning for use in lithium-ion batteries. ACS Appl. Mater. Interfaces 2010, 2, 2046–2052.CrossRefGoogle Scholar
  43. [43]
    Chen, G.; Wang, Z. Y.; Xia, D. G. One-pot synthesis of carbon nanotube@SnO2−Au coaxial nanocable for lithium-ion batteries with high rate capability. Chem. Mater. 2008, 20, 6951–6956.CrossRefGoogle Scholar
  44. [44]
    Yu, H.; Rui, X. H.; Tan, H. T.; Chen, J.; Huang, X.; Xu, C.; Liu, W. L.; Yu, D. Y. W.; Hng, H. H.; Hoster, H. E. et al. Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries. Nanoscale 2013, 5, 4937–4943.CrossRefGoogle Scholar
  45. [45]
    Zhang, W.; Gong, Y. X.; Mellott, N. P.; Liu, D. W.; Li, J. A. Synthesis of nickel doped anatase titanate as high performance anode materials for lithium ion batteries. J. Power Sources 2015, 276, 39–45.CrossRefGoogle Scholar
  46. [46]
    Ren, M. M.; Zhou, Z.; Li, Y. Z.; Gao, X. P.; Yan, J. Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. J. Power Sources 2006, 162, 1357–1362.CrossRefGoogle Scholar
  47. [47]
    Feng, Y. Y.; Ouyang, Y.; Peng, L.; Qiu, H. J.; Wang, H. L.; Wang, Y. Quasi-graphene-envelope Fe-doped Ni2P sandwiched nanocomposites for enhanced water splitting and lithium storage performance. J. Mater. Chem. A 2015, 3, 9587–9594.CrossRefGoogle Scholar
  48. [48]
    Yan, J. Y.; Song, H. H.; Yang, S. B.; Yan, J. D.; Chen, X. H. Preparation and electrochemical properties of composites of carbon nanotubes loaded with Ag and TiO2 nanoparticle for use as anode material in lithium-ion batteries. Electrochim. Acta 2008, 53, 6351–6355.CrossRefGoogle Scholar
  49. [49]
    Xu, Y.; Zhu, X.; Zhou, X.; Liu, X.; Liu, Y.; Dai, Z.; Bao, J. Ge nanoparticles encapsulated in nitrogen-doped reduced graphene oxide as an advanced anode material for lithium-ion batteries. J. Phys. Chem. C 2014, 118, 28502–28508.CrossRefGoogle Scholar
  50. [50]
    Zhu, J. H.; Jiang, J.; Sun, Z. P.; Luo, J. S.; Fan, Z. X.; Huang, X. T.; Zhang, H.; Yu, T. 3D carbon/cobalt-nickel mixed-oxide hybrid nanostructured arrays for asymmetric supercapacitors. Small 2014, 10, 2937–2945.CrossRefGoogle Scholar
  51. [51]
    Xie, Y.; Su, H. L.; Qian, X. F.; Liu, X. M.; Qian, Y. T. A mild one-step solvothermal route to metal phosphides (metal = Co, Ni, Cu). J. Solid State Chem. 2000, 149, 88–91.CrossRefGoogle Scholar
  52. [52]
    Su, H. L.; Xie, Y.; Li, B.; Liu, X. M.; Qian, Y. T. A simple, convenient, mild solvothermal route to nanocrystalline Cu3P and Ni2P. Solid State Ionics 1999, 122, 157–160.CrossRefGoogle Scholar
  53. [53]
    Toprakci, O.; Ji, L. W.; Lin, Z.; Toprakci, H. A. K.; Zhang, X. W. Fabrication and electrochemical characteristics of electrospun LiFePO4/carbon composite fibers for lithium-ion batteries. J. Power Sources 2011, 196, 7692–7699.CrossRefGoogle Scholar
  54. [54]
    Lv, Z. J.; Zhong, Q.; Bu, Y. F. In-situ conversion of rGO/Ni2P composite from GO/Ni-MOF precursor with enhanced electrochemical property. Appl. Surf. Sci. 2018, 439, 413–419.CrossRefGoogle Scholar
  55. [55]
    Pan, Y.; Yang, N.; Chen, Y. J.; Lin, Y.; Li, Y. P.; Liu, Y. Q.; Liu, C. G. Nickel phosphide nanoparticles-nitrogen-doped graphene hybrid as an efficient catalyst for enhanced hydrogen evolution activity. J. Power Sources 2015, 297, 45–52.CrossRefGoogle Scholar
  56. [56]
    Chen, G. F.; Ma, T. Y.; Liu, Z. Q.; Li, N.; Su, Y. Z.; Davey, K.; Qiao, S. Z. Efficient and stable bifunctional electrocatalysts Ni/NixMy (M = P, S) for overall water splitting. Adv. Funct. Mater. 2016, 26, 3314–3323.CrossRefGoogle Scholar
  57. [57]
    Mandel, K.; Dillon, F.; Koos, A. A.; Aslam, Z.; Jurkschat, K.; Cullen, F.; Crossley, A.; Bishop, H.; Moh, K.; Cavelius, C. et al. Facile, fast, and inexpensive synthesis of monodisperse amorphous nickel-phosphide nanoparticles of predefined size. Chem. Commun. 2011, 47, 4108–4110.CrossRefGoogle Scholar
  58. [58]
    Chen, C.; Zhang, N.; He, Y. L.; Liang, B.; Ma, R. Z.; Liu, X. H. Controllable fabrication of amorphous Co-Ni pyrophosphates for tuning electrochemical performance in supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 23114–23121.CrossRefGoogle Scholar
  59. [59]
    Carenco, S.; Surcin, C.; Morcrette, M.; Larcher, D.; Mézailles, N.; Boissière, C.; Sanchez, C. Improving the Li-electrochemical properties of monodisperse Ni2P nanoparticles by self-generated carbon coating. Chem. Mater. 2012, 24, 688–697.CrossRefGoogle Scholar
  60. [60]
    Jaszewski, R. W.; Schift, H.; Schnyder, B.; Schneuwly, A.; Gröning, P. The deposition of anti-adhesive ultra-thin teflon-like films and their interaction with polymers during hot embossing. Appl. Surf. Sci. 1999, 143, 301–308.CrossRefGoogle Scholar
  61. [61]
    Zhao, Y. F.; Huang, S. F.; Xia, M. R.; Rehman, S.; Mu, S. C.; Kou, Z. K.; Zhang, Z.; Chen, Z. Y.; Gao, F. M.; Hou, Y. L. N–P–O co-doped high performance 3D graphene prepared through red phosphorous-assisted “cutting-thin” technique: A universal synthesis and multifunctional applications. Nano Energy, 2016, 28, 346–355.CrossRefGoogle Scholar
  62. [62]
    Dong, X. C.; Su, C. Y.; Zhang, W. J.; Zhao, J. W.; Ling, Q. D.; Huang, W.; Chen, P.; Li, L. J. Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties. Phys. Chem. Chem. Phys. 2010, 12, 2164–2169.CrossRefGoogle Scholar
  63. [63]
    Gao, X. T.; Zhu, X. D.; Le, S. R.; Yan, D. J.; Qu, C. Y.; Feng, Y. J.; Sun, K. N.; Liu, Y. T. Boosting high-rate lithium storage of V2O5 nanowires by self-assembly on N-doped graphene nanosheets. ChemElectroChem 2016, 3, 1730–1736.CrossRefGoogle Scholar
  64. [64]
    Liu, D. S.; Liu, D. H.; Hou, B. H.; Wang, Y. Y.; Guo, J. Z.; Ning, Q. L.; Wu, X. L. 1D porous MnO@N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries. Electrochim. Acta 2018, 264, 292–300.Google Scholar
  65. [65]
    Tang, H.; Dou, K. P.; Kaun, C. C.; Kuang, Q.; Yang, S. H. MoSe2 nanosheets and their graphene hybrids: Synthesis, characterization and hydrogen evolution reaction studies. J. Mater. Chem. A 2014, 2, 360–364.CrossRefGoogle Scholar
  66. [66]
    Jiang, H.; Ma, J.; Li, C. Z. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv. Mater. 2012, 24, 4197–4202.CrossRefGoogle Scholar
  67. [67]
    Yang, Y.; Li, L.; Ruan, G. D.; Fei, H. L.; Xiang, C. S.; Fan, X. J.; Tour, J. M. Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors. ACS Nano 2014, 8, 9622–9628.CrossRefGoogle Scholar
  68. [68]
    Zhai, T.; Lu, X. H.; Ling, Y. C.; Yu, M. H.; Wang, G. M.; Liu, T. Y.; Liang, C. L.; Tong, Y. X.; Li, Y. A new benchmark capacitance for supercapacitor anodes by mixed-valence sulfur-doped V6O13–x. Adv. Mater. 2014, 26, 5869–5875.CrossRefGoogle Scholar
  69. [69]
    Zhou, K.; Zhou, W. J.; Yang, L. J.; Lu, J.; Cheng, S.; Mai, W. J.; Tang, Z. H.; Li, L. G.; Chen, S. W. Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: A general and effective approach. Adv. Funct. Mater. 2015, 25, 7530–7538.CrossRefGoogle Scholar
  70. [70]
    Wang, D.; Kong, L. B.; Liu, M. C.; Zhang, W. B.; Luo, Y. C.; Kang, L. Amorphous Ni–P materials for high performance pseudocapacitors. J. Power Sources 2015, 274, 1107–1113.CrossRefGoogle Scholar
  71. [71]
    Zheng, Z.; Retana, M.; Hu, X. B.; Luna, R.; Ikuhara, Y. H.; Zhou, W. L. Three-dimensional cobalt phosphide nanowire arrays as negative electrode material for flexible solid-state asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 16986–16994.CrossRefGoogle Scholar
  72. [72]
    Li, X.; Wu, H. J.; Elshahawy, A. M.; Wang, L.; Pennycook, S. J.; Guan, C.; Wang, J. Cactus-like NiCoP/NiCo-Oh 3D architecture with tunable composition for high-performance electrochemical capacitors. Adv. Funct. Mater. 2018, 28, 1800036.CrossRefGoogle Scholar
  73. [73]
    Liang, H. F.; Xia, C.; Jiang, Q.; Gandi, A. N.; Schwingenschlögl, U.; Alshareef, H. N. Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors. Nano Energy 2017, 35, 331–340.CrossRefGoogle Scholar
  74. [74]
    Wang, S. L.; Huang, Z. C.; Li, R.; Zheng, X.; Lu, F. X.; He, T. B. Template-assisted synthesis of NiP@CoAl-LDH nanotube arrays with superior electrochemical performance for supercapacitors. Electrochim. Acta 2016, 204, 160–168.CrossRefGoogle Scholar
  75. [75]
    Li, M. Y.; Wu, Y.; Zhao, F.; Wei, Y.; Wang, J. P.; Jiang, K. L.; Fan, S. S. Cycle and rate performance of chemically modified super-aligned carbon nanotube electrodes for lithium ion batteries. Carbon 2014, 69, 444–451.CrossRefGoogle Scholar
  76. [76]
    Bai, Y. J.; Zhang, H. J.; Liu, L.; Xu, H. T.; Wang, Y. Tunable and specific formation of C@NiCoP peapods with enhanced her activity and lithium storage performance. Chem. -Eur. J. 2016, 22, 1021–1029.CrossRefGoogle Scholar
  77. [77]
    Li, Q.; Ma, J. J.; Wang, H. J.; Yang, X.; Yuan, R.; Chai, Y. Q. Interconnected Ni2P nanorods grown on nickel foam for binder free lithium ion batteries. Electrochim. Acta 2016, 213, 201–206.CrossRefGoogle Scholar
  78. [78]
    Zhang, Y.; Zhang, H. J.; Feng, Y. Y.; Liu, L.; Wang, Y. Unique Fe2P nanoparticles enveloped in sandwichlike graphited carbon sheets as excellent hydrogen evolution reaction catalyst and lithium-ion battery anode. ACS Appl. Mater. Interfaces 2015, 7, 26684–26690.CrossRefGoogle Scholar
  79. [79]
    Wu, C.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk-shell-like nanostructural design. Adv. Mater. 2017, 29, 1604015.CrossRefGoogle Scholar
  80. [80]
    Wang, B.; Al Abdulla, W.; Wang, D. L.; Zhao, X. S. A three-dimensional porous LiFePO4 cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy Environ. Sci. 2015, 8, 869–875.CrossRefGoogle Scholar
  81. [81]
    Lu, A. L.; Zhang, X. Q.; Chen, Y. Z.; Xie, Q. S.; Qi, Q. Q.; Ma, Y. T.; Peng, D. L. Synthesis of Co2P/graphene nanocomposites and their enhanced properties as anode materials for lithium ion batteries. J. Power Sources 2015, 295, 329–335.CrossRefGoogle Scholar
  82. [82]
    Wang, X.; Sun, P. P.; Qin, J. W.; Wang, J. Q.; Xiao, Y.; Cao, M. H. A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries. Nanoscale 2016, 8, 10330–10338.CrossRefGoogle Scholar
  83. [83]
    Yang, D.; Zhu, J. X.; Rui, X. H.; Tan, H. T.; Cai, R.; Hoster, H. E.; Yu, D. Y. W.; Hng, H. H.; Yan, Q. Y. Synthesis of cobalt phosphides and their application as anodes for lithium ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 1093–1099.CrossRefGoogle Scholar
  84. [84]
    Li, G. A.; Wang, C. Y.; Chang, W. C.; Tuan, H. Y. Phosphorus-rich copper phosphide nanowires for field-effect transistors and lithium-ion batteries. ACS Nano 2016, 10, 8632–8644.CrossRefGoogle Scholar
  85. [85]
    Sun, L.; Zhang, Y.; Zhang, D. Y.; Zhang, Y. H. Amorphous red phosphorus nanosheets anchored on graphene layers as high performance anodes for lithium ion batteries. Nanoscale 2017, 9, 18552–18560.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and TechnologyChina University of Geosciences, BeijingBeijingChina

Personalised recommendations