Advertisement

Selectively patterned TiO2 nanorods as electron transport pathway for high performance perovskite solar cells

  • Daihong Huh
  • KyoungSuk Oh
  • Minjin Kim
  • Hak-Jong Choi
  • Dong Suk KimEmail author
  • Heon LeeEmail author
Research Article
  • 21 Downloads

Abstract

Organic-inorganic hybrid perovskite solar cells (PSCs) are attracting tremendous attention for new-generation photovoltaic devices because of their excellent power conversion efficiency and simple fabrication process. One of the various approaches to increase the efficiency of PSCs is to change the material or structure of the carrier transport layer. Here, optically long and electrically short structural concept is proposed to enhance the characteristics of a PSC by employing selectively grown single crystalline TiO2 nanorods. The approach has the merit of increasing the electron-hole separation effectively and enables a thicker active layer to be coated without electrical loss by using TiO2 nanorods as an electron pathway. Moreover, selectively grown TiO2 nanorods increase the optical path of the incident light via scattering effects and enable a smooth coating of the active layer. Nanoimprint lithography and hydrothermal growth were employed to fabricate selectively grown TiO2 nanorod substrates. The fabricated solar cell exhibits an efficiency of 19.86% with a current density, open-circuit voltage, and fill factor of 23.13 mA/cm2, 1.120 V, and 76.69%, respectively. Time-resolved photoluminescence, ultraviolet-visible (UV–Vis) spectroscopy, and the incident photon to current efficiency (IPCE) analysis were conducted to understand the factors responsible for the improvement in characteristics of the fabricated PSCs.

Keywords

perovskite solar cells patterned TiO2 nanorods nanoimprint lithography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This work was supported by the Development Program of the Korea Institute of Energy Research (KIER) (B8-2421) and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. 2016R1A2B3015400).

Supplementary material

12274_2018_2263_MOESM1_ESM.pdf (2.1 mb)
Electronic Supplementary Material

References

  1. [1]
    Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F.; Heeger, A. J. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 1992, 258, 1474–1476.CrossRefGoogle Scholar
  2. [2]
    Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. Dusastre, V., Ed.; World Scientific: Hackensack, NJ, 2010; pp 80–84.CrossRefGoogle Scholar
  3. [3]
    Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213.CrossRefGoogle Scholar
  4. [4]
    Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514.CrossRefGoogle Scholar
  5. [5]
    Chen, W.; Wu, Y. Z.; Yue, Y. F.; Liu, J.; Zhang, W. J.; Yang, X. D.; Chen, H.; Bi, E. B.; Ashraful, I.; Grätzel, M. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944–948.CrossRefGoogle Scholar
  6. [6]
    Kagan, C. R.; Mitzi, D. B.; Dimitrakopoulos, C. D.; Wudl, F.; Heeger, A. J. Organic-inorganic hybrid materials as semiconducting channels in thinfilm field-effect transistors. Science 1999, 286, 945–947.CrossRefGoogle Scholar
  7. [7]
    Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398.CrossRefGoogle Scholar
  8. [8]
    Tsai, H.; Nie, W. Y.; Lin, Y. H.; Blancon, J. C.; Tretiak, S.; Even, J.; Gupta, G.; Ajayan, P. M.; Mohite, A. D. Effect of precursor solution aging on the crystallinity and photovoltaic performance of perovskite solar cells. Adv. Energy Mater. 2017, 7, 1602159.CrossRefGoogle Scholar
  9. [9]
    Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.CrossRefGoogle Scholar
  10. [10]
    Cho, K. T.; Paek, S.; Grancini, G.; Roldán-Carmona, C.; Gao, P.; Lee, Y.; Nazeeruddin, M. K. Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ. Sci. 2017, 10, 621–627.CrossRefGoogle Scholar
  11. [11]
    NREL chart [Online]. https://www.nrel.gov/pv/assets/pdfs/pv-efficiencies-07-17-2018.pdf (accessed 8 July, 2018).Google Scholar
  12. [12]
    Zhou, Y. H.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A. J.; Li, H.; Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J. et al. A universal method to produce low-work function electrodes for organic electronics. Science 2012, 336, 327–332.CrossRefGoogle Scholar
  13. [13]
    Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C. S.; Chang, J. A.; Lee, Y. H.; Kim, H. J.; Sarkar, A.; Nazeeruddin, M. K. et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 2013, 7, 486–491.CrossRefGoogle Scholar
  14. [14]
    You, J. B.; Meng, L.; Song, T. B.; Guo, T. F.; Yang, Y.; Chang, W. H.; Hong, Z. R.; Chen, H. J.; Zhou, H. P.; Chen, Q. et al. Improved air stability of perovskite solar cells via ex situ solution-processed metal oxide transport layers. Nat. Nanotechnol. 2016, 11, 75–81.CrossRefGoogle Scholar
  15. [15]
    Qin, M. C.; Ma, J. J.; Ke, W. J.; Qin, P. L.; Lei, H. W.; Tao, H.; Zheng, X. L.; Xiong, L. B.; Liu, Q.; Chen, Z. L. et al. Perovskite solar cells based on low-temperature processed indium oxide electron selective layers. ACS Appl. Mater. Interfaces 2016, 8, 8460–8466.CrossRefGoogle Scholar
  16. [16]
    Choi, J.; Song, S.; Hörantner, M. T.; Snaith, H. J.; Park, T. Well-defined nanostructured, single-crystalline TiO2 electron transport layer for efficient planar perovskite solar cells. ACS Nano 2016, 10, 6029–6036.CrossRefGoogle Scholar
  17. [17]
    Kim, H. S.; Lee, J. W.; Yantara, N.; Boix, P. P.; Kulkarni, S. A.; Mhaisalkar, S.; Grätzel, M.; Park, N. G. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 2013, 13, 2412–2417.CrossRefGoogle Scholar
  18. [18]
    Yu, Y. H.; Li, J. Y.; Geng, D. L.; Wang, J. J.; Zhang, L. S.; Andrew, T. L.; Arnold, M. S.; Wang, X. D. Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures. ACS Nano 2015, 9, 564–572.CrossRefGoogle Scholar
  19. [19]
    Feng, X. J.; Shankar, K.; Varghese, O. K.; Paulose, M.; Latempa, T. J.; Grimes, C. A. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett. 2008, 8, 3781–3786.CrossRefGoogle Scholar
  20. [20]
    Liu, B.; Aydil, E. S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985–3990.CrossRefGoogle Scholar
  21. [21]
    Hendry, E.; Koeber, M.; O’Regan, B.; Bonn, M. Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy. Nano Lett. 2006, 6, 755–759.CrossRefGoogle Scholar
  22. [22]
    Li, Y. X.; Guo, M.; Zhang, M.; Wang, X. D. Hydrothermal synthesis and characterization of TiO2 nanorod arrays on glass substrates. Mater. Res. Bull. 2009, 44, 1232–1237.CrossRefGoogle Scholar
  23. [23]
    Nian, J. N.; Teng, H. Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor. J. Phys. Chem. B 2006, 110, 4193–4198.CrossRefGoogle Scholar
  24. [24]
    Bratton, D.; Yang, D.; Dai, J. Y.; Ober, C. K. Recent progress in high resolution lithography. Polym. Adv. Technol. 2006, 17, 94–103.CrossRefGoogle Scholar
  25. [25]
    Tseng, A. A.; Chen, K.; Chen, C. D.; Ma, K. J. Electron beam lithography in nanoscale fabrication: Recent development. IEEE Trans. Electron. Packag. Manuf. 2003, 26, 141–149.CrossRefGoogle Scholar
  26. [26]
    Sung, Y. H.; Jung, P. H.; Han, K. H.; Kim, Y. D.; Kim, J. J.; Lee, H. Improved out-coupling efficiency of organic light emitting diodes fabricated on a TiO2 planarization layer with embedded Si oxide nanostructures. Opt. Mater. 2017, 72, 828–832.CrossRefGoogle Scholar
  27. [27]
    Ahn, S. H.; Guo, L. J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: A step toward high-throughput application of continuous nanoimprinting. ACS Nano 2009, 3, 2304–2310.CrossRefGoogle Scholar
  28. [28]
    Lee, H.; Hong, S.; Yang, K.; Choi, K. Fabrication of 100 nm metal lines on flexible plastic substrate using ultraviolet curing nanoimprint lithography. Appl. Phys. Lett. 2006, 88, 143112.CrossRefGoogle Scholar
  29. [29]
    Guo, L. J. Nanoimprint lithography: Methods and material requirements. Adv. Mater. 2007, 19, 495–513.CrossRefGoogle Scholar
  30. [30]
    Loboda, M. J.; Grove, C. M.; Schneider, R. F. Properties of a-SiOx: H thin films deposited from hydrogen silsesquioxane resins. J. Electrochem. Soc. 1998, 145, 2861–2866.CrossRefGoogle Scholar
  31. [31]
    Jacobsen, K. W.; Norskov, J. K.; Puska, M. J. Interatomic interactions in the effective-medium theory. Phys. Rev. B 1987, 35, 7423–7442.CrossRefGoogle Scholar
  32. [32]
    Minot, M. J. Single-layer, gradient refractive index antireflection films effective from 0.35 to 2.5 μ. J. Opt. Soc. Am. 1976, 66, 515–519.CrossRefGoogle Scholar
  33. [33]
    Peacock, P. W.; Robertson, J. Band offsets and schottky barrier heights of high dielectric constant oxides. J. Appl. Phys. 2002, 92, 4712–4721.CrossRefGoogle Scholar
  34. [34]
    Todorov, T. K.; Tang, J.; Bag, S.; Gunawan, O.; Gokmen, T.; Zhu, Y.; Mitzi, D. B. Beyond 11% efficiency: Characteristics of state-of-the-art Cu2ZnSn(S,Se)4 solar cells. Adv. Energy Mater. 2013, 3, 34–38.CrossRefGoogle Scholar
  35. [35]
    Kanevce, A.; Levi, D. H.; Kuciauskas, D. The role of drift, diffusion, and recombination in time-resolved photoluminescence of CdTe solar cells determined through numerical simulation. Prog. Photovolt. Res. Appl. 2014, 22, 1138–1146.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
  2. 2.KIER-UNIST Advanced Center for EnergyKorea Institute of Energy Research (KIER)UlsanRepublic of Korea
  3. 3.Department of Electrical and Systems EngineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations