Advertisement

Water transport through subnanopores in the ultimate size limit: Mechanism from molecular dynamics

  • Jiyu Xu
  • Chongqin Zhu
  • Yifei Wang
  • Hui Li
  • Yongfeng Huang
  • Yutian Shen
  • Joseph S. Francisco
  • Xiao Cheng Zeng
  • Sheng Meng
Research Article
  • 22 Downloads

Abstract

Ab initio and classical molecular dynamics simulations show that water can flow through graphdiyne—an experimentally fabricated graphene-like membrane with highly dense (2.4 × 1018 pores/m2), uniformly ordered, subnanometer pores (incircle diameter 0.57 nm and van der Waals area 0.06 nm2). Water transports through subnanopores via a chemical-reaction-like activated process. The activated water flow can be precisely controlled through fine adjustment of working temperature and pressure. In contrast to a linear dependence on pressure for conventional membranes, here pressure directly modulates the activation energy, leading to a nonlinear water flow as a function of pressure. Consequently, high flux (1.6 L/Day/cm2/MPa) with 100% salt rejection efficiency is achieved at reasonable temperatures and pressures, suggesting graphdiyne can serve as an excellent membrane for water desalination. We further show that to get through subnanopores water molecule must break redundant hydrogen bonds to form a two-hydrogen-bond transient structure. Our study unveils the principles and atomistic mechanism for water transport through pores in ultimate size limit, and offers new insights on water permeation through nanochannels, design of molecule sieving and nanofluidic manipulation.

Keywords

graphdiyne subnanopore molecular dynamics water transport desalination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We acknowledge financial support from Ministry of Science and Technology (No. 2016YFA0300902), the National Natural Science Foundation of China (Nos. 11474328 and 11290164) and Chinese Academy of Sciences (No. XDB070301).

Supplementary material

12274_2018_2258_MOESM1_ESM.pdf (1.7 mb)
Water transport through subnanopores in the ultimate size limit: Mechanism from molecular dynamics

References

  1. [1]
    Buelke, C.; Alshami, A.; Casler, J.; Lewis, J.; Al-Sayaghi, M.; Hickner, M. A. Graphene oxide membranes for enhancing water purification in terrestrial and space-born applications: State of the art. Desalination 2018, 448, 1138lin.CrossRefGoogle Scholar
  2. [2]
    Pendergast, M. M.; Hoek, E. M. V. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 2011, 4, 1946–1971.CrossRefGoogle Scholar
  3. [3]
    Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Mariñas, B. J.; Mayes, A. M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310.CrossRefGoogle Scholar
  4. [4]
    Elimelech, M.; Phillip, W. A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717.CrossRefGoogle Scholar
  5. [5]
    Post, V. E. A.; Groen, J.; Kooi, H.; Person, M.; Ge, S. M.; Edmunds, W. M. Offshore fresh groundwater reserves as a global phenomenon. Nature 2013, 504, 71–78.CrossRefGoogle Scholar
  6. [6]
    Yang, L. H.; Gordon, V. D.; Trinkle, D. R.; Schmidt, N. W.; Davis, M. A.; DeVries, C.; Som, A.; Cronan, J. E. Jr.; Tew, G. N.; Wong, G. C. L. Mechanism of a prototypical synthetic membrane-active antimicrobial: Efficient holepunching via interaction with negative intrinsic curvature lipids. Proc. Natl. Acad. Sci. USA 2008, 105, 20595–20600.CrossRefGoogle Scholar
  7. [7]
    García-Fandiño, R.; Sansom, M. S. P. Designing biomimetic pores based on carbon nanotubes. Proc. Natl. Acad. Sci. USA 2012, 109, 6939–6944.CrossRefGoogle Scholar
  8. [8]
    Kosztin, I.; Schulten, K. Fluctuation-driven molecular transport through an asymmetric membrane channel. Phys. Rev. Lett. 2004, 93, 238102.CrossRefGoogle Scholar
  9. [9]
    Tunuguntla, R. H.; Henley, R. Y.; Yao, Y. C.; Pham, T. A.; Wanunu, M.; Noy, A. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 2017, 357, 792–796.CrossRefGoogle Scholar
  10. [10]
    Murata, K.; Mitsuoka, K.; Hirai, T.; Walz, T.; Agre, P.; Heymann, J. B.; Engel, A.; Fujiyoshi, Y. Structural determinants of water permeation through aquaporin-1. Nature 2000, 407, 599–605.CrossRefGoogle Scholar
  11. [11]
    Tajkhorshid, E.; Nollert, P.; Jensen, M. Ø.; Miercke, L. J. W.; O’connell, J.; Stroud, R. M.; Schulten, K. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 2002, 296, 525–530.CrossRefGoogle Scholar
  12. [12]
    Horner, A.; Zocher, F.; Preiner, J.; Ollinger, N.; Siligan, C.; Akimov, S. A.; Pohl, P. The mobility of single-file water molecules is governed by the number of H-bonds they may form with channel-lining residues. Sci. Adv. 2015, 1, e1400083.CrossRefGoogle Scholar
  13. [13]
    Kidambi, P. R.; Boutilier, M. S. H.; Wang, L. D.; Jang, D.; Kim, J.; Karnik, R. Selective nanoscale mass transport across atomically thin single crystalline graphene membranes. Adv. Mater. 2017, 29, 1605896.CrossRefGoogle Scholar
  14. [14]
    Zhu, C. Q.; Li, H.; Meng, S. Transport behavior of water molecules through two-dimensional nanopores. J. Chem. Phys. 2014, 141, 18C528.Google Scholar
  15. [15]
    Suk, M. E.; Aluru, N. R. Water transport through ultrathin graphene. J. Phys. Chem. Lett. 2010, 1, 1590–1594.CrossRefGoogle Scholar
  16. [16]
    Cohen-Tanugi, D.; Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 2012, 12, 3602–3608.CrossRefGoogle Scholar
  17. [17]
    Zhu, C. Q.; Li, H.; Zeng, X. C.; Wang, E. G.; Meng, S. Quantized water transport: Ideal desalination through graphyne-4 membrane. Sci. Rep. 2013, 3, 3163.CrossRefGoogle Scholar
  18. [18]
    Kou, J. L.; Zhou, X. Y.; Lu, H. J.; Wu, F. M.; Fan, J. T. Graphyne as the membrane for water desalination. Nanoscale 2014, 6, 1865–1870.CrossRefGoogle Scholar
  19. [19]
    Lin, S. C.; Buehler, M. J. Mechanics and molecular filtration performance of graphyne nanoweb membranes for selective water purification. Nanoscale 2013, 5, 11801–11807.CrossRefGoogle Scholar
  20. [20]
    Holt, J. K.; Park, H. G.; Wang, Y. M.; Stadermann, M.; Artyukhin, A. B.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 2006, 312, 1034–1037.CrossRefGoogle Scholar
  21. [21]
    Thomas, J. A.; McGaughey, A. J. H. Water flow in carbon nanotubes: Transition to subcontinuum transport. Phys. Rev. Lett. 2009, 102, 184502.CrossRefGoogle Scholar
  22. [22]
    Qin, X. C.; Yuan, Q. Z.; Zhao, Y. P.; Xie, S. B.; Liu, Z. F. Measurement of the rate of water translocation through carbon nanotubes. Nano Lett. 2011, 11, 2173–2177.CrossRefGoogle Scholar
  23. [23]
    Joseph, S.; Aluru, N. Why are carbon nanotubes fast transporters of water? Nano Lett. 2008, 8, 452–458.CrossRefGoogle Scholar
  24. [24]
    Striolo, A. The mechanism of water diffusion in narrow carbon nanotubes. Nano Lett. 2006, 6, 633–639.CrossRefGoogle Scholar
  25. [25]
    Wang, Y. J.; Li, L. B.; Wei, Y. Y.; Xue, J.; Chen, H.; Ding, L.; Caro, J.; Wang, H. H. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angew. Chem., Int. Ed. 2017, 56, 8974–8980.CrossRefGoogle Scholar
  26. [26]
    Xue, M. M.; Qiu, H.; Guo, W. L. Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers. Nanotechnology 2013, 24, 505720.CrossRefGoogle Scholar
  27. [27]
    Surwade, S. P.; Smirnov, S. N.; Vlassiouk, I. V.; Unocic, R. R.; Veith, G. M.; Dai, S.; Mahurin, S. M. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 2015, 10, 459–464.CrossRefGoogle Scholar
  28. [28]
    Liu, J.; Shi, G. S.; Guo, P.; Yang, J. R.; Fang, H. P. Blockage of water flow in carbon nanotubes by ions due to interactions between cations and aromatic rings. Phys. Rev. Lett. 2015, 115, 164502.CrossRefGoogle Scholar
  29. [29]
    Han, J.; Fu, J. P.; Schoch, R. B. Molecular sieving using nanofilters: Past, present and future. Lab Chip 2008, 8, 23–33.CrossRefGoogle Scholar
  30. [30]
    Wan, R. Z.; Li, J. Y.; Lu, H. J.; Fang, H. P. Controllable water channel gating of nanometer dimensions. J. Am. Chem. Soc. 2005, 127, 7166–7170.CrossRefGoogle Scholar
  31. [31]
    Li, J. Y.; Gong, X. J.; Lu, H. J.; Li, D.; Fang, H. P.; Zhou, R. H. Electrostatic gating of a nanometer water channel. Proc. Natl. Acad. Sci. USA 2007, 104, 3687–3692.CrossRefGoogle Scholar
  32. [32]
    Gong, X. J.; Li, J. Y.; Zhang, H.; Wan, R. Z.; Lu, H. J.; Wang, S.; Fang, H. P. Enhancement of water permeation across a nanochannel by the structure outside the channel. Phys. Rev. Lett. 2008, 101, 257801.CrossRefGoogle Scholar
  33. [33]
    Li, Y. J.; Xu, L.; Liu, H. B.; Li, Y. L. Graphdiyne and graphyne: From theoretical predictions to practical construction. Chem. Soc. Rev. 2014, 43, 2572–2586.CrossRefGoogle Scholar
  34. [34]
    Zhang, S. L.; Liu, H. B.; Huang, C. S.; Cui, G. L.; Li, Y. L. Bulk graphdiyne powder applied for highly efficient lithium storage. Chem. Commun. 2015, 51, 1834–1837.CrossRefGoogle Scholar
  35. [35]
    Zhang, S. L.; Du, H. P.; He, J. J.; Huang, C. S.; Liu, H. B.; Cui, G. L.; Li, Y. L. Nitrogen-doped graphdiyne applied for lithium-ion storage. ACS Appl. Mater. Interfaces 2016, 8, 8467–8473.CrossRefGoogle Scholar
  36. [36]
    Wang, S.; Yi, L. X.; Halpert, J. E.; Lai, X.Y.; Liu, Y. Y.; Cao, H. B.; Yu, R. B.; Wang, D.; Li, Y. L. A novel and highly efficient photocatalyst based on P25–graphdiyne nanocomposite. Small 2012, 8, 265–271.CrossRefGoogle Scholar
  37. [37]
    Cranford, S. W.; Buehler, M. J. Selective hydrogen purification through graphdiyne under ambient temperature and pressure. Nanoscale 2012, 4, 4587–4593.CrossRefGoogle Scholar
  38. [38]
    Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.CrossRefGoogle Scholar
  39. [39]
    Qian, X. M.; Ning, Z.Y.; Li, Y. L.; Liu, H. B.; Ouyang, C. B.; Chen, Q.; Li, Y. J. Construction of graphdiyne nanowires with high-conductivity and mobility. Dalton Trans. 2012, 41, 730–733.CrossRefGoogle Scholar
  40. [40]
    Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J. Am. Chem. Soc. 2017, 139, 3145–3152.CrossRefGoogle Scholar
  41. [41]
    Gao, X.; Li, J.; Du, R.; Zhou, J. Y.; Huang, M. Y.; Liu, R.; Li, J.; Xie, Z. Q.; Wu, L. Z.; Liu, Z. F. et al. Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell. Adv. Mater. 2017, 29, 1605308.CrossRefGoogle Scholar
  42. [42]
    Bartolomei, M.; Carmona-Novillo, E.; Hernández, M. I.; Campos-Martínez, J.; Pirani, F.; Giorgi, G.; Yamashita, K. Penetration barrier of water through graphynes’ pores: First-principles predictions and force field optimization. J. Phys. Chem. Lett. 2014, 5, 751–755.CrossRefGoogle Scholar
  43. [43]
    Yuan, Z.; Govind Rajan, A.; Misra, R. P.; Drahushuk, L. W.; Agrawal, K. V.; Strano, M. S.; Blankschtein, D. Mechanism and prediction of gas permeation through sub-nanometer graphene pores: Comparison of theory and simulation. ACS Nano 2017, 118, 7974–7987.CrossRefGoogle Scholar
  44. [44]
    VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Quickstep: Fast and accurate density functional calculations using a mixed gaussian and plane waves approach. Comput. Phys. Commun. 2005, 167, 103–128.CrossRefGoogle Scholar
  45. [45]
    Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100.CrossRefGoogle Scholar
  46. [46]
    Lee, C.; Yang, W.T.; Parr, R. G. Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.CrossRefGoogle Scholar
  47. [47]
    Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 1996, 54, 1703–1710.CrossRefGoogle Scholar
  48. [48]
    Hartwigsen, C.; Goedecker, S.; Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 1998, 58, 3641–3662.CrossRefGoogle Scholar
  49. [49]
    Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.CrossRefGoogle Scholar
  50. [50]
    Yoo, S.; Xantheas, S. S. Communication: The effect of dispersion corrections on the melting temperature of liquid water. J. Chem. Phys. 2011, 134, 121105.CrossRefGoogle Scholar
  51. [51]
    Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M. R.; Smith, J. C.; Kasson, P. M.; van der Spoel, D. et al. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013, 29, 845–854.CrossRefGoogle Scholar
  52. [52]
    Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271.CrossRefGoogle Scholar
  53. [53]
    Darden, T.; York, D.; Pedersen, L. Particle mesh ewald: An N–log(N) method for ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092.CrossRefGoogle Scholar
  54. [54]
    Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690.CrossRefGoogle Scholar
  55. [55]
    Sanz, E.; Vega, C.; Abascal, J. L. F.; MacDowell, L. G. Phase diagram of water from computer simulation. Phys. Rev. Lett. 2004, 92, 255701.CrossRefGoogle Scholar
  56. [56]
    Li, M. Y.; Zhang, Y. M.; Jiang, Y. L.; Zhang, Y.; Wang, Y. M.; Zhou, H. M. Mechanical properties of γ-graphyne nanotubes. RSC Adv. 2018, 8, 15659–15666.CrossRefGoogle Scholar
  57. [57]
    Ajori, S.; Ansari, R.; Mirnezhad, M. Mechanical properties of defective γ-graphyne using molecular dynamics simulations. Mater. Sci. Eng.: A 2013, 561, 34–39.CrossRefGoogle Scholar
  58. [58]
    Cohen-Tanugi, D.; Grossman, J. C. Mechanical strength of nanoporous graphene as a desalination membrane. Nano Lett. 2014, 14, 6171–6178.CrossRefGoogle Scholar
  59. [59]
    Kopec, W.; Köpfer, D. A.; Vickery, O. N.; Bondarenko, A. S.; Jansen, T. L. C.; de Groot, B. L.; Zachariae, U. Direct knock-on of desolvated ions governs strict ion selectivity in K+ channels. Nat. Chem. 2018, 10, 813–820.CrossRefGoogle Scholar
  60. [60]
    Zhang, H. C.; Hou, J.; Hu, Y. X.; Wang, P. Y.; Ou, R. W.; Jiang, L.; Liu, J. Z.; Freeman, B. D.; Hill, A. J.; Wang, H. T. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci. Adv. 2018, 4, eaaq0066.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jiyu Xu
    • 1
    • 2
  • Chongqin Zhu
    • 3
  • Yifei Wang
    • 1
    • 2
  • Hui Li
    • 1
    • 4
  • Yongfeng Huang
    • 1
    • 2
  • Yutian Shen
    • 1
    • 2
  • Joseph S. Francisco
    • 3
  • Xiao Cheng Zeng
    • 3
  • Sheng Meng
    • 1
    • 2
  1. 1.Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Department of ChemistryUniversity of NebraskaLincolnUSA
  4. 4.Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations