Advertisement

Hierarchical growth of a novel Mn-Bi coupled BiVO4 arrays for enhanced photoelectrochemical water splitting

  • Lu Wang
  • Jinzhan SuEmail author
  • Liejin GuoEmail author
Research Article

Abstract

Oxygen evolving catalyst (OEC) is a critical determinant for the efficiency of photoelectrochemical (PEC) water splitting. Here we report an approach to depositing a novel manganese borate (Mn-Bi) OER catalyst on BiVO4 nanocone photoanode by photodeposition in sodium borate buffer solution containing Mn(II) ions. Due to the spontaneous photo-electric-field-enhancement effect at the vertically oriented BiVO4 nanocone structure, spherical Mn-Bi nanoparticle was selectively photodeposited at the apex of BiVO4 nanocone. Significant improvement of photocurrent was observed for the obtained hierarchical Mn-Bi/BiVO4 photoanode which could be ascribed to enhanced hole injection efficiency, especially in low bias region. It was observed that the injection efficiency of Mn-Bi/BiVO4 is 98% which gave a photocurrent of 0.94 mA/cm2 at 1.5 V vs. RHE.

Keywords

bismuth vanadate photoelectrochemistry solar water splitting oxygen evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We gratefully thank the financial supports from the Fundamental Research Funds for the Central Universities (No. xjj2016039).

Supplementary material

12274_2018_2256_MOESM1_ESM.pdf (863 kb)
Hierarchical growth of a novel Mn-Bi coupled BiVO4 arrays for enhanced photoelectrochemical water splitting

References

  1. [1]
    Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.CrossRefGoogle Scholar
  2. [2]
    Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001, 414, 625–627.CrossRefGoogle Scholar
  3. [3]
    Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 2012, 6, 511–518.CrossRefGoogle Scholar
  4. [4]
    Wu, Y. S.; Liu, X. J.; Han, D. D.; Song, X. Y.; Shi, L.; Song, Y.; Niu, S. W.; Xie, Y. F.; Cai, J. Y.; Wu, S. Y. et al. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat. Commun. 2018, 9, 1425.CrossRefGoogle Scholar
  5. [5]
    Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.CrossRefGoogle Scholar
  6. [6]
    Song, X. Y.; Li, W. Q.; He, D.; Wu, H. Y.; Ke, Z. J.; Jiang, C. Z.; Wang, G. M.; Xiao, X. H. The “midas touch” transformation of TiO2 nanowire arrays during visible light photoelectrochemical performance by carbon/ nitrogen coimplantation. Adv. Energy Mater. 2018, 8, 1800165.CrossRefGoogle Scholar
  7. [7]
    He, D.; Song, X. Y.; Ke, Z. J.; Xiao, X. H.; Jiang, C. Z. Construct Fe2+ species and Au particles for significantly enhanced photoelectrochemical performance of α-Fe2O3 by ion implantation. Sci. China Mater. 2018, 61, 878–886.CrossRefGoogle Scholar
  8. [8]
    Woodhouse, M.; Parkinson, B. A. Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem. Soc. Rev. 2009, 38, 197–210.CrossRefGoogle Scholar
  9. [9]
    Roger, I.; Shipman, M. A.; Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003.CrossRefGoogle Scholar
  10. [10]
    Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.CrossRefGoogle Scholar
  11. [11]
    Park, Y.; McDonald, K. J.; Choi, K. S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 2013, 42, 2321–2337.CrossRefGoogle Scholar
  12. [12]
    Zhong, M.; Hisatomi, T.; Kuang, Y. B.; Zhao, J.; Liu, M.; Iwase, A.; Jia, Q. X.; Nishiyama, H.; Minegishi, T.; Nakabayashi, M. et al. Surface modification of CoOx loaded BiVO4 photoanodes with ultrathin p-type NiO layers for improved solar water oxidation. J. Am. Chem. Soc. 2015, 137, 5053–5060.CrossRefGoogle Scholar
  13. [13]
    Kudo, A.; Omori, K.; Kato, H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 1999, 121, 11459–11467.CrossRefGoogle Scholar
  14. [14]
    Tokunaga, S.; Kato, H.; Kudo, A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater. 2001, 13, 4624–4628.CrossRefGoogle Scholar
  15. [15]
    Abdi, F. F.; Han, L. H.; Smets, A. H. M.; Zeman, M.; Dam, B.; van de Krol, R. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 2013, 4, 2195.CrossRefGoogle Scholar
  16. [16]
    Seabold, J. A.; Choi, K. S. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 2186–2192.CrossRefGoogle Scholar
  17. [17]
    Wan, X. K.; Niu, F. J.; Su, J. Z.; Guo, L. J. Enhanced photoelectrochemical water oxidation of bismuth vanadate via a combined strategy of W doping and surface RGO modification. Phys. Chem. Chem. Phys. 2016, 18, 31803–31810.CrossRefGoogle Scholar
  18. [18]
    Rettie, A. J. E.; Lee, H. C.; Marshall, L. G.; Lin, J. F.; Capan, C.; Lindemuth, J.; McCloy, J. S.; Zhou, J. S.; Bard, A. J.; Mullins, C. B. Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: Intrinsic behavior of a complex metal oxide. J. Am. Chem. Soc. 2013, 135, 11389–11396.CrossRefGoogle Scholar
  19. [19]
    Nair, V.; Perkins, C. L.; Lin, Q. Y.; Law, M. Textured nanoporous Mo:BiVO4 photoanodes with high charge transport and charge transfer quantum efficiencies for oxygen evolution. Energy Environ. Sci. 2016, 9, 1412–1429.CrossRefGoogle Scholar
  20. [20]
    Pilli, S. K.; Furtak, T. E.; Brown, L. D.; Deutsch, T. G.; Turner, J. A.; Herring, A. M. Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation. Energy Environ. Sci. 2011, 4, 5028–5034.CrossRefGoogle Scholar
  21. [21]
    Kim, C. W.; Son, Y. S.; Kang, M. J.; Kim, D. Y.; Kang, Y. S. (040)-crystal facet engineering of BiVO4 plate photoanodes for solar fuel production.. Adv. Energy Mater. 2016, 6, 1501754.CrossRefGoogle Scholar
  22. [22]
    Zhou, M.; Zhang, S. D.; Sun, Y. F.; Wu, C. Z.; Wang, M. T.; Xie, Y. C-oriented and {010} facets exposed BiVO4 nanowall films: Template-free fabrication and their enhanced photoelectrochemical properties. Chem. Asian J. 2010, 5, 2515–2523.CrossRefGoogle Scholar
  23. [23]
    Kim, T. W.; Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990–994.CrossRefGoogle Scholar
  24. [24]
    Chhetri, M.; Dey, S.; Rao, C. N. R. Photoelectrochemical oxygen evolution reaction activity of amorphous Co–La double hydroxide-BiVO4 fabricated by pulse plating electrodeposition. ACS Energy Lett. 2017, 2, 1062–1069.CrossRefGoogle Scholar
  25. [25]
    Wan, X. K.; Wang, L.; Dong, C. L.; Menendez Rodriguez, G.; Huang, Y. C.; Macchioni, A.; Shen, S. H. Activating kläui-type organometallic precursors at metal oxide surfaces for enhanced solar water oxidation. ACS Energy Lett. 2018, 3, 1613–1619.CrossRefGoogle Scholar
  26. [26]
    Jia, A. H.; Kan, M.; Jia, J. P.; Zhao, Y. X. Photodeposited FeOOH vs electrodeposited Co-Pi to enhance nanoporous BiVO4 for photoelectrochemical water splitting. J. Semicond. 2017, 38, 053004.CrossRefGoogle Scholar
  27. [27]
    Kan, M.; Xue, D. Q.; Jia, A. H.; Qian, X. F.; Yue, D. T.; Jia, J. P.; Zhao, Y. X. A highly efficient nanoporous BiVO4 photoelectrode with enhanced interface charge transfer co-catalyzed by molecular catalyst. Appl. Catal. B Environ. 2018, 225, 504–511.CrossRefGoogle Scholar
  28. [28]
    Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.CrossRefGoogle Scholar
  29. [29]
    Surendranath, Y.; Dinca, M.; Nocera, D. G. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J. Am. Chem. Soc. 2009, 131, 2615–2620.CrossRefGoogle Scholar
  30. [30]
    Ullman, A. M.; Nocera, D. G. Mechanism of cobalt self-exchange electron transfer. J. Am. Chem. Soc. 2013, 135, 15053–15061.CrossRefGoogle Scholar
  31. [31]
    Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G. Structure-activity correlations in a nickel–borate oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 6801–6809.CrossRefGoogle Scholar
  32. [32]
    Bediako, D. K.; Surendranath, Y.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. J. Am. Chem. Soc. 2013, 135, 3662–3674.CrossRefGoogle Scholar
  33. [33]
    Barber, J. Crystal structure of the oxygen-evolving complex of photosystem II. Inorg. Chem. 2008, 47, 1700–1710.CrossRefGoogle Scholar
  34. [34]
    Lubitz, W.; Reijerse, E. J.; Messinger, J. Solar water-splitting into H2 and O2: Design principles of photosystem II and hydrogenases. Energy Environ. Sci. 2008, 1, 15–31.CrossRefGoogle Scholar
  35. [35]
    Su, J. Z.; Guo, L. J.; Yoriya, S.; Grimes, C. A. Aqueous growth of pyramidalshaped BiVO4 nanowire arrays and structural characterization: Application to photoelectrochemical water splitting. Cryst. Growth Des. 2010, 10, 856–861.CrossRefGoogle Scholar
  36. [36]
    Qiu, Y. C.; Liu, W.; Chen, W.; Chen, W.; Zhou, G. M.; Hsu, P. C.; Zhang, R. F.; Liang, Z.; Fan, S. S.; Zhang, Y. G. et al. Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells. Sci. Adv. 2016, 2, e1501764.CrossRefGoogle Scholar
  37. [37]
    Feng, X. J.; Shankar, K.; Varghese, O. K.; Paulose, M.; Latempa, T. J.; Grimes, C. A. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett. 2008, 8, 3781–3786.CrossRefGoogle Scholar
  38. [38]
    Liu, B.; Aydil, E. S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985–3990.CrossRefGoogle Scholar
  39. [39]
    Vayssieres, L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 2003, 15, 464–466.CrossRefGoogle Scholar
  40. [40]
    Wang, M.; Ren, F.; Cai, G. X.; Liu, Y. C.; Shen, S. H.; Guo, L. J. Activating ZnO nanorod photoanodes in visible light by cu ion implantation. Nano Res. 2014, 7, 353–364.CrossRefGoogle Scholar
  41. [41]
    Wei, Y. K.; Su, J. Z.; Wan, X. K.; Guo, L. J.; Vayssieres, L. Spontaneous photoelectric field-enhancement effect prompts the low cost hierarchical growth of highly ordered heteronanostructures for solar water splitting. Nano Res. 2016, 9, 1561–1569.CrossRefGoogle Scholar
  42. [42]
    Walsh, A.; Yan, Y. F.; Huda, M. N.; Al-Jassim, M. M.; Wei, S. H. Band edge electronic structure of BiVO4: Elucidating the role of the Bi s and V d orbitals. Chem. Mater. 2009, 21, 547–551.CrossRefGoogle Scholar
  43. [43]
    McDonald, K. J.; Choi, K. S. A new electrochemical synthesis route for a bioi electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation. Energy Environ. Sci. 2012, 5, 8553–8557.CrossRefGoogle Scholar
  44. [44]
    Ambrosio, F.; Wiktor, J.; Pasquarello, A. pH-dependent catalytic reaction pathway for water splitting at the BiVO4-water interface from the band alignment. ACS Energy Lett. 2018, 3, 829–834.CrossRefGoogle Scholar
  45. [45]
    Steinmiller, E. M. P.; Choi, K. S. Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production. Proc. Natl. Acad. Sci. USA 2009, 106, 20633–20636.CrossRefGoogle Scholar
  46. [46]
    Nie, K. Q.; Kashtanov, S.; Wei, Y. K.; Liu, Y. S.; Zhang, H.; Kapilashrami, M.; Ye, Y. F.; Glans, P. A.; Zhong, J.; Vayssieres, L. et al. Atomic-scale understanding of the electronic structure-crystal facets synergy of nanopyramidal CoPi/BiVO4 hybrid photocatalyst for efficient solar water oxidation. Nano Energy 2018, 53, 483–491.CrossRefGoogle Scholar
  47. [47]
    Choi, S. K.; Choi, W.; Park, H. Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes. Phys. Chem. Chem. Phys. 2013, 15, 6499–6507.CrossRefGoogle Scholar
  48. [48]
    Ma, M.; Qu, F. L.; Ji, X. Q.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Yao, Y. D.; Chen, L.; Sun, X. P. Bimetallic nickel-substituted cobalt-borate nanowire array: An earth-abundant water oxidation electrocatalyst with superior activity and durability at near neutral pH. Small 2017, 13, 1700394.CrossRefGoogle Scholar
  49. [49]
    Zhou, M.; Bao, J.; Bi, W. T.; Zeng, Y. Q.; Zhu, R.; Tao, M. S.; Xie, Y. Efficient water splitting via a heteroepitaxial BiVO4 photoelectrode decorated with Co-Pi catalysts. ChemSusChem 2012, 5, 1420–1425.CrossRefGoogle Scholar
  50. [50]
    Zhou, X. H.; Liu, R.; Sun, K.; Papadantonakis, K. M.; Brunschwig, B. S.; Lewis, N. S. 570 mV photovoltage, stabilized n-Si/CoOx heterojunction photoanodes fabricated using atomic layer deposition. Energy Environ. Sci. 2016, 9, 892–897.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy &Power EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations