Advertisement

Doping modulated in-plane anisotropic Raman enhancement on layered ReS2

  • Na Zhang
  • Jingjing Lin
  • Shuqing Zhang
  • Shishu Zhang
  • Xiaobo Li
  • Dongyan Liu
  • Hua Xu
  • Jin Zhang
  • Lianming TongEmail author
Research Article
  • 30 Downloads

Abstract

Anisotropic two-dimensional (2D) materials exhibit lattice-orientation dependent optical and electrical properties. Carriers doping of such materials has been used to modulate their energy band structures for opto-electronic applications. Herein, we show that by stacking monolayer rhenium disulfide (ReS2) on a flat gold film, the electrons doping in ReS2 can affect the in-plane anisotropic Raman enhancement of molecules adsorbed on ReS2. The change of enhancement factor and the degree of anisotropy in enhancement with layer number are sensitively dependent on the doping level of ReS2 by gold, which is further confirmed by Kelvin probe force microscopy (KPFM) measurements. These findings could open an avenue for probing anisotropic electronic interactions between molecules and 2D materials with low symmetry using Raman enhancement effect.

Keywords

ReS2 anisotropy charge transfer Raman enhancement electrons doping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank J. Guan and B. Ma for the vacuum thermal deposition, L. Sun for providing the graphene sample, and S. Jiang for the CVD-grown ReS2 sample. This work was supported by the National Natural Science Foundation of China (Nos. 51432002, 51720105003, 21790052, 11374355 and 21573004), the Ministry of Science and Technology of China (Nos. 2016YFA0200100 and 2015CB932400), and the Beijing Municipal Science and Technology Project (No. Z161100002116026).

Supplementary material

12274_2018_2254_MOESM1_ESM.pdf (2.2 mb)
Doping modulated in-plane anisotropic Raman enhancement on layered ReS2

References

  1. [1]
    Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.CrossRefGoogle Scholar
  2. [2]
    Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.CrossRefGoogle Scholar
  3. [3]
    Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517–521.CrossRefGoogle Scholar
  4. [4]
    Shi, G. S.; Kioupakis, E. Anisotropic spin transport and strong visible-light absorbance in few-layer SnSe and GeSe. Nano Lett. 2015, 15, 6926–6931.CrossRefGoogle Scholar
  5. [5]
    Yang, S. X.; Liu, Y.; Wu, M. H.; Zhao, L. D.; Lin, Z. Y.; Cheng, H. C.; Wang, Y. L.; Jiang, C. B.; Wei, S. H.; Huang, L. et al. Highly-anisotropic optical and electrical properties in layered SnSe. Nano Res. 2018, 11, 554–564.CrossRefGoogle Scholar
  6. [6]
    Ho, C. H.; Huang, Y.S.; Tiong, K. K.; Liao, P. C. In-plane anisotropy of the optical and electrical properties of layered ReS2 crystals. J. Phys.: Condens. Matter 1999, 11, 5367–5375.Google Scholar
  7. [7]
    Liu, E. F.; Fu, Y. J.; Wang, Y. J.; Feng, Y. Q.; Liu, H. M.; Wan, X. G.; Zhou, W.; Wang, B. G.; Shao, L. B.; Ho, C. H. et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 2015, 6, 6991.CrossRefGoogle Scholar
  8. [8]
    Hafeez, M.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic raman property and optoelectronic application. Adv. Mater. 2016, 28, 8296–8301.CrossRefGoogle Scholar
  9. [9]
    Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.CrossRefGoogle Scholar
  10. [10]
    Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 2015, 10, 707–713.CrossRefGoogle Scholar
  11. [11]
    Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319.CrossRefGoogle Scholar
  12. [12]
    Mao, N. N.; Tang, J. Y.; Xie, L. M.; Wu, J. X.; Han, B. W.; Lin, J. J.; Deng, S. B.; Ji, W.; Xu, H.; Liu, K. H. et al. Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 2016, 138, 300–305.CrossRefGoogle Scholar
  13. [13]
    Huang, S. X.; Tatsumi, Y.; Ling, X.; Guo, H. H.; Wang, Z. Q.; Watson, G.; Puretzky, A. A.; Geohegan, D. B.; Kong, J.; Li, J. et al. In-plane optical anisotropy of layered gallium telluride. ACS Nano 2016, 10, 8964–8972.CrossRefGoogle Scholar
  14. [14]
    Tian, Z.; Guo, C. L.; Zhao, M. X.; Li, R. R.; Xue, J. M. Two-dimensional SnS: A phosphorene analogue with strong in-plane electronic anisotropy. ACS Nano 2017, 11, 2219–2226.CrossRefGoogle Scholar
  15. [15]
    Liu, X. L.; Ryder, C. R.; Wells, S. A.; Hersam, M. C. Resolving the in-plane anisotropic properties of black phosphorus. Small Methods 2017, 1, 1700143.CrossRefGoogle Scholar
  16. [16]
    Aslan, O. B.; Chenet, D. A.; van der Zande, A. M.; Hone, J. C.; Heinz, T. F. Linearly polarized excitons in single- and few-layer ReS2 crystals. ACS Photonics 2016, 3, 96–101.CrossRefGoogle Scholar
  17. [17]
    Zhang, S. S.; Zhang, N.; Zhao, Y.; Cheng, T.; Li, X. B.; Feng, R.; Xu, H.; Liu, Z. R.; Zhang, J.; Tong, L. M. Spotting the differences in two-dimensional materials-the Raman scattering perspective. Chem. Soc. Rev. 2018, 47, 3380.CrossRefGoogle Scholar
  18. [18]
    Wu, J. X.; Mao, N. N.; Xie, L. M.; Xu, H.; Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem., Int. Ed. 2015, 127, 2396–2399.CrossRefGoogle Scholar
  19. [19]
    Mao, N. N.; Zhang, S. Q.; Wu, J. X.; Zhang, J.; Tong, L. M. Lattice vibration and Raman scattering in anisotropic black phosphorus crystals. Small Methods 2018, 2, 1700409.CrossRefGoogle Scholar
  20. [20]
    Qiao, X. F.; Wu, J. B.; Zhou, L. W.; Qiao, J. S.; Shi, W.; Chen, T.; Zhang, X.; Zhang, J.; Ji, W.; Tan, P. H. Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2. Nanoscale 2016, 8, 8324–8332.CrossRefGoogle Scholar
  21. [21]
    Zhao, H.; Wu, J. B.; Zhong, H. X.; Guo, Q. S.; Wang, X. M.; Xia, F. N.; Yang, L.; Tan, P. H.; Wang, H. Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Res. 2015, 8, 3651–3661.CrossRefGoogle Scholar
  22. [22]
    Zhang, E. Z.; Jin, Y. B.; Yuan, X.; Wang, W. Y.; Zhang, C.; Tang, L.; Liu, S. S.; Zhou, P.; Hu, W. D.; Xiu, F. X. ReS2-based field-effect transistors and photodetectors. Adv. Funct. Mater. 2015, 25, 4076–4082.CrossRefGoogle Scholar
  23. [23]
    Yang, Y. S.; Liu, S. C.; Yang, W.; Li, Z. B.; Wang, Y.; Wang, X.; Zhang, S. S.; Zhang, Y.; Long, M. S.; Zhang, G. M. et al. Air-stable in-plane anisotropic GeSe2 for highly polarization-sensitive photodetection in short wave region. J. Am. Chem. Soc. 2018, 140, 4150–4156.CrossRefGoogle Scholar
  24. [24]
    Liu, E. F.; Long, M. S.; Zeng, J. W.; Luo, W.; Wang, Y. J.; Pan, Y. M.; Zhou, W.; Wang, B. G.; Hu, W. D.; Ni, Z. H. et al. High responsivity phototransistors based on few-layer ReS2 for weak signal detection. Adv. Funct. Mater. 2016, 26, 1938–1944.CrossRefGoogle Scholar
  25. [25]
    Hong, T.; Chamlagain, B.; Lin, W. Z.; Chuang, H. J.; Pan, M. H.; Zhou, Z. X.; Xu, Y. Q. Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 2014, 6, 8978–8983.CrossRefGoogle Scholar
  26. [26]
    Zhang, E. Z.; Wang, P.; Li, Z.; Wang, H. F.; Song, C. Y.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K. T.; Lu, S. H. et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 2016, 10, 8067–8077.CrossRefGoogle Scholar
  27. [27]
    Li, X. B.; Cui, F. F.; Feng, Q. T.; Wang, G.; Xu, X. S.; Wu, J. X.; Mao, N. N.; Liang, X.; Zhang, Z. Y.; Zhang, J. et al. Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application. Nanoscale 2016, 8, 18956–18962.CrossRefGoogle Scholar
  28. [28]
    Friemelt, K.; Lux-Steiner, M. C.; Bucher, E. Optical properties of the layered transition-metal-dichalcogenide ReS2: Anisotropy in the van der Waals plane. J. Appl. Phys. 1993, 74, 5266–5268.CrossRefGoogle Scholar
  29. [29]
    Ho, C. H.; Huang, Y. S.; Tiong, K. K. In-plane anisotropy of the optical and electrical properties of ReS2 and ReSe2 layered crystals. J. Alloy. Compd. 2001, 317–318, 222–226.CrossRefGoogle Scholar
  30. [30]
    Lin, Y. C.; Komsa, H. P.; Yeh, C. H.; Björkman, T.; Liang, Z. Y.; Ho, C. H.; Huang, Y. S.; Chiu, P. W.; Krasheninnikov, A. V.; Suenaga, K. Single-layer ReS2: Two-dimensional semiconductor with tunable in-plane anisotropy. ACS Nano 2015, 9, 11249–11257.CrossRefGoogle Scholar
  31. [31]
    Avsar, A.; Vera-Marun, I. J.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Castro Neto, A. H.; Öezyilmaz, B. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 2015, 9, 4138–4145.CrossRefGoogle Scholar
  32. [32]
    Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y. S.; Ho, C. H.; Yan, J. Y. et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 2014, 5, 3252.CrossRefGoogle Scholar
  33. [33]
    Liu, E. F.; Fu, Y. J.; Wang, Y. J.; Feng, Y. Q.; Liu, H. M.; Wan, X. G.; Zhou, W.; Wang, B. G.; Shao, L. B.; Ho, C. H. et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 2015, 6, 6991.CrossRefGoogle Scholar
  34. [34]
    Liu, F. C.; Zheng, S. J.; He, X. X.; Chaturvedi, A.; He, J. F.; Chow, W. L.; Mion, T. R.; Wang, X. L.; Zhou, J. D.; Fu, Q. D. et al. Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv. Funct. Mater. 2016, 26, 1169–1177.CrossRefGoogle Scholar
  35. [35]
    Lin, J. J.; Liang, L. B.; Ling, X.; Zhang, S. Q.; Mao, N. N.; Zhang, N.; Sumpter, B. G.; Meunier, V.; Tong, L. M.; Zhang, J. Enhanced Raman scattering on in-plane anisotropic layered materials. J. Am. Chem. Soc. 2015, 137, 15511–15517.CrossRefGoogle Scholar
  36. [36]
    Miao, P.; Qin, J. K.; Shen, Y. F.; Su, H. M.; Dai, J. F.; Song, B.; Du, Y. C.; Sun, M. T.; Zhang, W.; Wang, H. L. et al. Unraveling the Raman enhancement mechanism on 1T′-phase ReS2 nanosheets. Small 2018, 14, 1704079.CrossRefGoogle Scholar
  37. [37]
    Çakir, D.; Sahin, H.; Peeters, F. M. Doping of rhenium disulfide monolayers: A systematic first principles study. Phys. Chem. Chem. Phys. 2014, 16, 16771–16779.CrossRefGoogle Scholar
  38. [38]
    Kim, J.; Baik, S. S.; Ryu, S. H.; Sohn, Y.; Park, S.; Park, B. G.; Denlinger, J.; Yi, Y.; Choi, H. J.; Kim, K. S. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 2015, 349, 723–726.CrossRefGoogle Scholar
  39. [39]
    Qin, J. K.; Shao, W. Z.; Xu, C. Y.; Li, Y.; Ren, D. D.; Song, X. G.; Zhen, L. Chemical vapor deposition growth of degenerate p-type mo-doped ReS2 films and their homojunction. ACS Appl. Mater. Interfaces 2017, 9, 15583–15591.CrossRefGoogle Scholar
  40. [40]
    Jing, Y.; Tang, Q.; He, P.; Zhou, Z.; Shen, P. W. Small molecules make big differences: Molecular doping effects on electronic and optical properties of phosphorene. Nanotechnology 2015, 26, 095201.CrossRefGoogle Scholar
  41. [41]
    Shim, J.; Oh, S.; Kang, D. H.; Jo, S. H.; Ali, M. H.; Choi, W. Y.; Heo, K.; Jeon, J.; Lee, S.; Kim, M. et al. Phosphorene/rhenium disulfide heterojunctionbased negative differential resistance device for multi-valued logic. Nat. Commun. 2016, 7, 13413.CrossRefGoogle Scholar
  42. [42]
    Yang, Z. B.; Hao, J. H. Recent progress in black-phosphorus-based heterostructures for device applications. Small Methods 2018, 2, 1700296.CrossRefGoogle Scholar
  43. [43]
    Yang, L. M.; Majumdar, K.; Liu, H.; Du, Y. C.; Wu, H.; Hatzistergos, M.; Hung, P. Y.; Tieckelmann, R.; Tsai, W.; Hobbs, C. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014, 14, 6275–6280.CrossRefGoogle Scholar
  44. [44]
    Wolverson, D.; Crampin, S.; Kazemi, A. S.; Ilie, A.; Bending, S. J. Raman spectra of monolayer, few-layer, and bulk ReSe2: An anisotropic layered semiconductor. ACS Nano 2014, 8, 11154–11164.CrossRefGoogle Scholar
  45. [45]
    Lombardi, J. R.; Birke, R. L. Theory of surface-enhanced Raman scattering in semiconductors. J. Phys. Chem. C 2014, 118, 11120–11130.CrossRefGoogle Scholar
  46. [46]
    Chenet, D. A.; Aslan, O. B.; Huang, P. Y.; Fan, C.; van der Zande, A. M.; Heinz, T. F.; Hone, J. C. In-plane anisotropy in mono-and few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy. Nano Lett. 2015, 15, 5667–5672.CrossRefGoogle Scholar
  47. [47]
    Basova, T. V.; Kolesov, B. A. Raman spectra of copper phthalocyanin: Experiment and calculation. J. Struct. Chem. 2000, 41, 770–777.CrossRefGoogle Scholar
  48. [48]
    Liu, Z. Q.; Zhang, X. X.; Zhang, Y. X.; Jiang, J. H. Theoretical investigation of the molecular, electronic structures and vibrational spectra of a series of first transition metal phthalocyanines. Spectrochim. Acta. A: Mol. Biomol. Spectrosc. 2007, 67, 1232–1246.CrossRefGoogle Scholar
  49. [49]
    Basova, T. V.; Kiselev, V. G.; Schuster, B. E.; Peisert, H.; Chassé, T. Experimental and theoretical investigation of vibrational spectra of copper phthalocyanine: Polarized single-crystal Raman spectra, isotope effect and DFT calculations. J. Raman Spectrosc. 2009, 40, 2080–2087.CrossRefGoogle Scholar
  50. [50]
    Barros, E. B.; Dresselhaus, M. S. Theory of Raman enhancement by twodimensional materials: Applications for graphene-enhanced Raman spectroscopy. Phys. Rev. B 2014, 90, 035443.CrossRefGoogle Scholar
  51. [51]
    Han, X. X.; Ji, W.; Zhao, B.; Ozaki, Y. Semiconductor-enhanced Raman scattering: Active nanomaterials and applications. Nanoscale 2017, 9, 4847–4861.CrossRefGoogle Scholar
  52. [52]
    Hegner, M.; Wagner, P.; Semenza, G. Ultralarge atomically flat templatestripped Au surfaces for scanning probe microscopy. Surf. Sci. 1993, 291, 39–46.CrossRefGoogle Scholar
  53. [53]
    Schatz, G. C.; Young, M. A.; van Duyne, R. P. Electromagnetic mechanism of SERS. In Surface-Enhanced Raman Scattering: Physics and Applications. Kneipp, K.; Moskovits, M.; Kneipp, H., Eds.; Springer: Berlin, Heidelberg, 2006; pp 19–45.CrossRefGoogle Scholar
  54. [54]
    Feng, Y. Q.; Zhou, W.; Wang, Y. J.; Zhou, J.; Liu, E. F.; Fu, Y. J.; Ni, Z. H.; Wu, X. L.; Yuan, H. T.; Miao, F. et al. Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry. Phys. Rev. B 2015, 92, 054110.CrossRefGoogle Scholar
  55. [55]
    Buscema, M.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561–571.CrossRefGoogle Scholar
  56. [56]
    McCreary, A.; Simpson, J. R.; Wang, Y. X.; Rhodes, D.; Fujisawa, K.; Balicas, L.; Dubey, M.; Crespi, V. H.; Terrones, M.; Walker, A. R. H. Intricate resonant Raman response in anisotropic ReS2. Nano Lett. 2017, 17, 5897–5907.CrossRefGoogle Scholar
  57. [57]
    Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57.CrossRefGoogle Scholar
  58. [58]
    Takahashi, T.; Tokailin, H.; Sagawa, T. Angle-resolved ultraviolet photoelectron spectroscopy of the unoccupied band structure of graphite. Phys. Rev. B 1985, 32, 8317–8324.CrossRefGoogle Scholar
  59. [59]
    Park, J. Y.; Joe, H. E.; Yoon, H. S.; Yoo, S.; Kim, T.; Kang, K.; Min, B. K.; Jun, S. C. Contact effect of ReS2/metal interface. ACS Appl. Mater. Interfaces 2017, 9, 26325–26332.CrossRefGoogle Scholar
  60. [60]
    Rivière, J. C. The work function of gold. Appl. Phys. Lett. 1966, 8, 172.CrossRefGoogle Scholar
  61. [61]
    Cui, X. D.; Freitag, M.; Martel, R.; Brus, L.; Avouris, P. Controlling energy-level alignments at carbon nanotube/Au contacts. Nano Lett. 2003, 3, 783–787.CrossRefGoogle Scholar
  62. [62]
    Chu, C. W.; Shrotriya, V.; Li, G.; Yang, Y. Tuning acceptor energy level for efficient charge collection in copper-phthalocyanine-based organic solar cells. Appl. Phys. Lett. 2006, 88, 153504.CrossRefGoogle Scholar
  63. [63]
    Jung, N.; Kim, N.; Jockusch, S.; Turro, N. J.; Kim, P.; Brus, L. Charge transfer chemical doping of few layer graphenes: Charge distribution and band gap formation. Nano Lett. 2009, 9, 4133–4137.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Na Zhang
    • 1
  • Jingjing Lin
    • 1
  • Shuqing Zhang
    • 1
  • Shishu Zhang
    • 1
  • Xiaobo Li
    • 2
  • Dongyan Liu
    • 2
  • Hua Xu
    • 2
  • Jin Zhang
    • 1
  • Lianming Tong
    • 1
    Email author
  1. 1.Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.School of Materials Science and EngineeringShaanxi Normal UniversityXi’anChina

Personalised recommendations