Advertisement

Nitrogen, phosphorus co-doped carbon cloth as self-standing electrode for lithium-iodine batteries

  • Kang Li
  • Song Chen
  • Si Chen
  • Xien Liu
  • Wei Pan
  • Jintao Zhang
Research Article
  • 78 Downloads

Abstract

Rechargeable lithium-iodine (Li-I2) battery is a promising energy storage system because of the high energy and power density. However, the shuttle effects of iodine species and the unstable features of I2 block the practical applications of Li-I2 batteries. Herein, a dual heteroatom doped porous carbon cloth is fabricated as the host material for lithium iodide (LiI). Specifically, the self-standing nitrogen, phosphorus co-doped carbon cloth with high LiI loading exhibits a large specific capacity (221 mAh·g−1 at 1 C), excellent rate capability (95.8% capacity retention at 5 C) and superior long cycling stability (2,000 cycles with a capacity retention of 96%). Electrochemical kinetic analysis confirms the dominant contribution of capacitive effects at high scan rates, which is responsible for the good high-rate performance. The improved electrochemical performance mainly stems from two unique features of nitrogen, phosphorus co-doped porous carbon cloth. Heteroatom doping provides extra active sites for strong adsorption of iodine species while the highly porous structure with large surface area favors the capacitive effects at high rates. This work provides a facile yet efficient approach to regulating both redox reaction and capacitive effects via adjusting surface composition and pore structure of carbon materials for enhanced battery performance.

Keywords

iodine heteroatom doping self-standing capacitive effect porous carbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21503116). The Taishan Scholars Program of Shandong Province (Nos. tsqn20161004 and ts201712011) and the Youth 1000 Talent Program of China are also acknowledged.

Supplementary material

12274_2018_2251_MOESM1_ESM.pdf (8.5 mb)
Electronic Supplementary Material

References

  1. [1]
    Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.CrossRefGoogle Scholar
  2. [2]
    Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.CrossRefGoogle Scholar
  3. [3]
    Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.CrossRefGoogle Scholar
  4. [4]
    Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.CrossRefGoogle Scholar
  5. [5]
    Zhu, Y. Q.; Cao, C. B. A simple synthesis of two-dimensional ultrathin nickel cobaltite nanosheets for electrochemical lithium storage. Electrochim. Acta 2015, 176, 141–148.CrossRefGoogle Scholar
  6. [6]
    Zou, Y. H.; Yang, X. F.; Lv, C. X.; Liu, T. C.; Xia, Y. Z.; Shang, L.; Waterhouse, G. I. N.; Yang, D. J.; Zhang, T. R. Multishelled Ni-rich Li(NixCoyMnz)O2 hollow fibers with low cation mixing as high-performance cathode materials for Li-ion batteries. Adv. Sci. 2017, 4, 1600262.CrossRefGoogle Scholar
  7. [7]
    Zhu, Y. Q.; Cao, C. B.; Zhang, J. T.; Xu, X. Y. Two-dimensional ultrathin ZnCo2O4 nanosheets: General formation and lithium storage application. J. Mater. Chem. A 2015, 3, 9556–9564.CrossRefGoogle Scholar
  8. [8]
    Xiao, Z. T.; Meng, J. S.; Li, Q.; Wang, X. P.; Huang, M.; Liu, Z. A.; Han, C. H.; Mai, L. Q. Novel MOF shell-derived surface modification of Li-rich layered oxide cathode for enhanced lithium storage. Sci. Bull. 2018, 63, 46–53.CrossRefGoogle Scholar
  9. [9]
    Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Zhao, Y.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. NiFe layered double hydroxide nanoparticles on Co,N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2017, 7, 1700467.CrossRefGoogle Scholar
  10. [10]
    Zhao, Q.; Lu, Y. Y.; Zhu, Z. Q.; Tao, Z. L.; Chen, J. Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode. Nano Lett. 2015, 15, 5982–5987.CrossRefGoogle Scholar
  11. [11]
    Lu, K.; Hu, Z. Y.; Ma, J. Z.; Ma, H. Y.; Dai, L. M.; Zhang, J. T. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry. Nat. Commun. 2017, 8, 527.CrossRefGoogle Scholar
  12. [12]
    Zhao, Y.; Hong, M. S.; Bonnet Mercier, N.; Yu, G. H.; Choi, H. C.; Byon, H. R. A 3.5V lithium-iodine hybrid redox battery with vertically aligned carbon nanotube current collector. Nano Lett. 2014, 14, 1085–1092.CrossRefGoogle Scholar
  13. [13]
    Bertasi, F.; Sepehr, F.; Pagot, G.; Paddison, S. J.; Di Noto, V. Toward a magnesium-iodine battery. Adv. Funct. Mater. 2016, 26, 4860–4865.CrossRefGoogle Scholar
  14. [14]
    Zhang, Q.; Wu, Z. Z.; Liu, F.; Liu, S.; Liu, J.; Wang, Y. L.; Yan, T. Y. Encapsulating a high content of iodine into an active graphene substrate as a cathode material for high-rate lithium–iodine batteries. J. Mater. Chem. A 2017, 5, 15235–15242.CrossRefGoogle Scholar
  15. [15]
    Zhao, Y.; Wang, L. N.; Byon, H. R. High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat. Commun. 2013, 4, 1896.CrossRefGoogle Scholar
  16. [16]
    Zhao, Y.; Mercier, N. B.; Byon, H. R. An aqueous lithium-iodine battery with solid polymer electrolyte-coated metallic lithium anode. ChemPlusChem 2015, 80, 344–348.CrossRefGoogle Scholar
  17. [17]
    Li, K. D.; Lin, B.; Li, Q. F.; Wang, H. F.; Zhang, S.; Deng, C. Anchoring iodine to N-doped hollow carbon fold-hemisphere: Toward a fast and stable cathode for rechargeable lithium-iodine batteries. ACS Appl. Mater. Interfaces 2017, 9, 20508–20518.CrossRefGoogle Scholar
  18. [18]
    Kim, S.; Kim, S. K.; Sun, P. C.; Oh, N.; Braun, P. V. Reduced graphene oxide/LiI composite lithium ion battery cathodes. Nano Lett. 2017, 17, 6893–6899.CrossRefGoogle Scholar
  19. [19]
    Wang, Y. L.; Sun, Q. L.; Zhao, Q. Q.; Cao, J. S.; Ye, S. H. Rechargeable lithium/iodine battery with superior high-rate capability by using iodine–carbon composite as cathode. Energy Environ. Sci. 2011, 4, 3947–3950.CrossRefGoogle Scholar
  20. [20]
    Su, Z.; Wei, Z. X.; Lai, C.; Deng, H. Q.; Liu, Z. X.; Ma, J. M. Robust pseudo-capacitive Li-I2 battery enabled by catalytic, adsorptive N-doped graphene interlayer. Energy Storage Mater. 2018, 14, 129–135.CrossRefGoogle Scholar
  21. [21]
    Wu, Z. Z.; Xu, J. T.; Zhang, Q.; Wang, H. B.; Ye, S. H.; Wang, Y. L.; Lai, C. LiI embedded meso-micro porous carbon polyhedrons for lithium iodine battery with superior lithium storage properties. Energy Storage Mater. 2018, 10, 62–68.CrossRefGoogle Scholar
  22. [22]
    Tian, H. J.; Gao, T.; Li, X. G.; Wang, X. W.; Luo, C.; Fan, X. L.; Yang, C. Y.; Suo, L. M.; Ma, Z. H.; Han, W. Q. et al. High power rechargeable magnesium/iodine battery chemistry. Nat. Commun. 2017, 8, 14083.CrossRefGoogle Scholar
  23. [23]
    Bai, C.; Cai, F. S.; Wang, L. C.; Guo, S. Q.; Liu, X. Z.; Yuan, Z. H. A sustainable aqueous Zn-I2 battery. Nano Res. 2018, 11, 3548–3554, DOI: 10.1007/s12274-017-1920-9.CrossRefGoogle Scholar
  24. [24]
    Pan, H. L.; Li, B.; Mei, D. H.; Nie, Z. M.; Shao, Y. Y.; Li, G. S.; Li, X. S.; Han, K. S.; Mueller, K. T. et al. Controlling solid–liquid conversion reactions for a highly reversible aqueous zinc–iodine battery. ACS Energy Lett. 2017, 2, 2674–2680.CrossRefGoogle Scholar
  25. [25]
    Yuan, L. Y.; Lu, X. H.; Xiao, X.; Zhai, T.; Dai, J. J.; Zhang, F. C.; Hu, B.; Wang, X.; Gong, L.; Chen, J. et al. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 2012, 6, 656–661.CrossRefGoogle Scholar
  26. [26]
    Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.CrossRefGoogle Scholar
  27. [27]
    Cong, H. P.; Ren, X. C.; Wang, P.; Yu, S. H. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 2013, 6, 1185–1191.CrossRefGoogle Scholar
  28. [28]
    Wang, D. W.; Li, F.; Zhao, J. P.; Ren, W. C.; Chen, Z. G.; Tan, J.; Wu, Z. S.; Gentle, I.; Lu, G. Q.; Cheng, H. M. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for highperformance flexible electrode. ACS Nano 2009, 3, 1745–1752.CrossRefGoogle Scholar
  29. [29]
    Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, 61, 1527–1535, DOI: 10.1007/s40843-018-9324-0.CrossRefGoogle Scholar
  30. [30]
    Zhu, Y. Q.; Cao, T.; Cao, C. B.; Ma, X. L.; Xu, X. Y.; Li, Y. D. A general synthetic strategy to monolayer graphene. Nano Res. 2018, 11, 3088–3095.CrossRefGoogle Scholar
  31. [31]
    Shang, L.; Yu, H. J.; Huang, X.; Bian, T.; Shi, R.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R.. Well-dispersed ZIF-derived Co,N-co-doped Carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv. Mater. 2016, 28, 1668–1674.Google Scholar
  32. [32]
    Yuan, H.; Liu, J.; Li, H. S.; Li, Y. J.; Liu, X. F.; Shi, D. X.; Wu, Q.; Jiao, Q. Z. Graphitic carbon nitride quantum dot decorated three-dimensional graphene as an efficient metal-free electrocatalyst for triiodide reduction. J. Mater. Chem. A 2018, 6, 5603–5607.CrossRefGoogle Scholar
  33. [33]
    Zhang, J. T.; Qu, L. T.; Shi, G. Q.; Liu, J. Y.; Chen, J. F.; Dai, L. M. N,Pcodoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angew. Chem., Int. Ed. 2016, 55, 2230–2234.CrossRefGoogle Scholar
  34. [34]
    Xu, J. T.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S. X.; Dai, L. M. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 2015, 27, 2042–2048.CrossRefGoogle Scholar
  35. [35]
    Meng, Z.; Tian, H. J.; Zhang, S. L.; Yan, X. F.; Ying, H. J.; He, W.; Liang, C.; Zhang, W. K.; Hou, X. H.; Han, W. Q. Polyiodide-shuttle restricting polymer cathode for rechargeable lithium/iodine battery with ultralong cycle life. ACS Appl. Mater. Interfaces 2018, 10, 17933–17941.CrossRefGoogle Scholar
  36. [36]
    Yang, Y.; Zheng, G. Y.; Misra, S.; Nelson, J.; Toney, M. F.; Cui, Y. Highcapacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J. Am. Chem. Soc. 2012, 134, 15387–15394.CrossRefGoogle Scholar
  37. [37]
    Weinstein, L.; Yourey, W.; Gural, J.; Amatucci, G. G. Electrochemical impedance spectroscopy of electrochemically self-assembled lithium–iodine batteries. J. Electrochem. Soc. 2008, 155, A590–A598.CrossRefGoogle Scholar
  38. [38]
    Schmidt, C. L.; Skarstad, P. M. Development of an equivalent-circuit model for the lithium/iodine battery. J. Power Sources 1997, 65, 121–128.CrossRefGoogle Scholar
  39. [39]
    Ma, X. L.; Ning, G. Q.; Qi, C. L.; Xu, C. G.; Gao, J. S. Phosphorus and nitrogen dual-doped few-layered porous graphene: A high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 14415–14422.CrossRefGoogle Scholar
  40. [40]
    Hou, H. S.; Shao, L. D.; Zhang, Y.; Zou, G. Q.; Chen, J.; Ji, X. B. Large-area carbon nanosheets doped with phosphorus: A high-performance anode material for sodium-ion batteries. Adv. Sci. 2017, 4, 1600243.CrossRefGoogle Scholar
  41. [41]
    Zhu, Y. Q.; Guo, H. Z.; Wu, Y.; Cao, C. B.; Tao, S.; Wu, Z. Y. Surfaceenabled superior lithium storage of high-quality ultrathin NiO nanosheets. J. Mater. Chem. A 2014, 2, 7904–7911.CrossRefGoogle Scholar
  42. [42]
    Zhu, Y. Q.; Guo, H. Z.; Zhai, H. Z.; Cao, C. B. Microwave-assisted and gram-scale synthesis of ultrathin SnO2 nanosheets with enhanced lithium storage properties. ACS Appl. Mater. Interfaces 2015, 7, 2745–2753.CrossRefGoogle Scholar
  43. [43]
    Ge, P.; Zhang, C. Y.; Hou, H. S.; Wu, B. K.; Zhou, L.; Li, S. J.; Wu, T. J.; Hu, J. G.; Mai, L. Q.; Ji, X. B. Anions induced evolution of Co3X4 (X=O, S, Se) as sodium-ion anodes: The influences of electronic structure, morphology, electrochemical property. Nano Energy 2018, 48, 617–629.CrossRefGoogle Scholar
  44. [44]
    Xia, X. H.; Chao, D. L.; Zhang, Y. Q.; Zhan, J. Y.; Zhong, Y.; Wang, X. L.; Wang, Y. D.; Shen, Z. X.; Tu, J. P.; Fan, H. J. Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 2016, 12, 3048–3058.CrossRefGoogle Scholar
  45. [45]
    Chao, D. L.; Zhu, C. R.; Yang, P. H.; Xia, X. H.; Liu, J. L.; Wang, J.; Fan, X. F.; Savilov, S. V.; Lin, J. Y.; Fan, H. J. et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 2016, 7, 12122.CrossRefGoogle Scholar
  46. [46]
    Chee, W. K.; Lim, H. N.; Zainal, Z.; Huang, N. M.; Harrison, I.; Andou, Y. Flexible graphene-based supercapacitors: A review. J. Phys. Chem. C 2016, 120, 4153–4172.CrossRefGoogle Scholar
  47. [47]
    Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kang Li
    • 1
  • Song Chen
    • 1
  • Si Chen
    • 1
  • Xien Liu
    • 2
  • Wei Pan
    • 3
  • Jintao Zhang
    • 1
  1. 1.Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical EngineeringShandong UniversityJinanChina
  2. 2.State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular EngineeringQingdao University of Science & TechnologyQingdaoChina
  3. 3.College of Chemistry, Chemical Engineering and Materials ScienceShandong Normal UniversityJinanChina

Personalised recommendations