Advertisement

Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries

  • Peihao Li
  • Yong Yang
  • Sheng Gong
  • Fan Lv
  • Wei Wang
  • Yiju Li
  • Mingchuan Luo
  • Yi Xing
  • Qian Wang
  • Shaojun Guo
Research Article
  • 125 Downloads

Abstract

Despite various 2H-MoS2/carbon hybrid nanostructures have been constructed and committed to improve the performance for sodium-ion batteries (SIBs), they still show the limited cycle stability due to the relatively large volumetric expansion during the charge–discharge process. Herein, we report the construction of cobalt-doped few-layered 1T-MoS2 nanosheets embedded in N, S-doped carbon (CMS/NSC) nanobowls derived from metal-organic framework (MOF) precursor via a simple in situ sulfurization process. This unique hierarchical structure enables the uniformly dispersed Co-doped 1T-MoS2 nanosheets intimately couple with the highly conductive carbon nanobowls, thus efficiently preventing the aggregation. In particular, the Co-doping plays a crucial role in maintaining the integrity of structure for MoS2 during cycling tests, confirmed by first-principles calculations. Compared with pristine MoS2, the volume deformation of Co-doped MoS2 can be shrunk by a prominent value of 52% during cycling. Furthermore, the few-layered MoS2 nanosheets with 1T metallic phase endow higher conductivity, and thus can surpass its counterpart 2H semiconducting phase in battery performance. By virtue of the synergistic effect of stable structure, appropriate doping and high conductivity, the resulting CMS/NSC hybrid shows superior rate capability and cycle stability. The capacity of CMS/NSC can still be 235.9 mAh·g−1 even at 25 A·g−1, which is 51.3% of the capacity at 0.2 A·g−1. Moreover, the capacity can still remain 218.6 mAh·g−1 even over 8,240 cycles at 5 A·g−1 with a low decay of 0.0044% per cycle, one of the best performances among the reported MoS2-based anode materials for SIBs.

Keywords

sodium-ion battery anode 1T-MoS2 cobalt-doping metal-organic framework (MOF) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by National Key R&D Program of China (No. 2016YFB0100200), Young Thousand Talents Program, the Open Project Foundation of State Key Laboratory of Chemical Resource Engineering, the China Postdoctoral Science Foundation (No.2017M610018), the National Natural Science Foundation of China (No. 51671003), Start-up Funding from Peking University.

Supplementary material

12274_2018_2250_MOESM1_ESM.pdf (5.3 mb)
Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries

References

  1. [1]
    Delmas, C. Sodium and sodium-ion batteries: 50 years of research. Adv. Energy Mater. 2018, 8, 1703137.CrossRefGoogle Scholar
  2. [2]
    Wang, W.; Li, P. H.; Zheng, H.; Liu, Q.; Lv, F.; Wu, J. D.; Wang, H.; Guo, S. J. Ultrathin layered SnSe nanoplates for low voltage, high-rate, and long-life alkali-ion batteries. Small 2017, 13, 1702228.CrossRefGoogle Scholar
  3. [3]
    Yang, Y.; Luo, M. C.; Xing, Y.; Wang, S. T.; Zhang, W. Y.; Lv, F.; Li, Y. J.; Zhang, Y. L.; Wang, W.; Guo, S. J. A universal strategy for intimately coupled carbon nanosheets/MoM nanocrystals (M = P, S, C, and O) hierarchical hollow nanospheres for hydrogen evolution catalysis and sodium-ion storage. Adv. Mater. 2018, 30, 1706085.CrossRefGoogle Scholar
  4. [4]
    Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten, P. H. L. Sodium–ion battery materials and electrochemical properties reviewed. Adv. Energy Mater. 2018, 8, 1800079.CrossRefGoogle Scholar
  5. [5]
    Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614.CrossRefGoogle Scholar
  6. [6]
    Li, P. H.; Wang, W.; Gong, S.; Lv, F.; Huang, H. X.; Luo, M. C.; Yang, Y.; Yang, C.; Zhou, J. H.; Qian, C. et al. Hydrogenated Na2Ti3O7 epitaxially grown on flexible N-doped carbon sponge for potassium-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 37974–37980, DOI: 10.1021/acsami.8b11354.CrossRefGoogle Scholar
  7. [7]
    Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. S. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 2014, 5, 4033.CrossRefGoogle Scholar
  8. [8]
    Yang, Y.; Wang, S. T.; Lin, S.; Li, Y. T.; Zhang, W. Y.; Chao, Y. G.; Luo, M. C.; Xing, Y.; Wang, K.; Yang, C. et al. Rational design of hierarchical TiO2/epitaxially aligned MoS2–carbon coupled interface nanosheets core/shell architecture for ultrastable sodium–ion and lithium-sulfur batteries. Small Methods 2018, 16, 1800119.CrossRefGoogle Scholar
  9. [9]
    Lei, Z. D.; Zhan, J.; Tang, L.; Zhang, Y.; Wang, Y. Recent development of metallic (1T) phase of molybdenum disulfide for energy conversion and storage. Adv. Energy Mater. 2018, 8, 1703482.CrossRefGoogle Scholar
  10. [10]
    Sun, D.; Ye, D. L.; Liu, P.; Tang, Y. G.; Guo, J.; Wang, L. Z.; Wang, H. Y. MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702383.CrossRefGoogle Scholar
  11. [11]
    Park, J.; Kim, J. S.; Park, J. W.; Nam, T. H.; Kim, K. W.; Ahn, J. H.; Wang, G. X.; Ahn, H. J. Discharge mechanism of MoS2 for sodium ion battery: Electrochemical measurements and characterization. Electrochim. Acta 2013, 92, 427–432.CrossRefGoogle Scholar
  12. [12]
    Xing, Y.; Yang, Y.; Chen, R. J.; Luo, M. C.; Chen, N.; Ye, Y. S.; Qian, J.; Li, L.; Wu, F.; Guo, S. J. Strongly coupled carbon nanosheets/molybdenum carbide nanocluster hollow nanospheres for high–performance aprotic Li-O2 battery. Small 2018, 14, 1704366.CrossRefGoogle Scholar
  13. [13]
    Yang, Y.; Wang, S. T.; Jiang, C. H.; Lu, Q. C.; Tang, Z. L.; Wang, X. Controlled synthesis of hollow Co–Mo mixed oxide nanostructures and their electrocatalytic and lithium storage properties. Chem. Mater. 2016, 28, 2417–2423.CrossRefGoogle Scholar
  14. [14]
    Yang, Y.; Wang, S. T.; Luo, M. C.; Wang, W.; Lv, F.; Tang, Z. L.; Guo, S. J. Li4Ti5O12–TiO2/MoO2 nanoclusters-embedded into carbon nanosheets core/shell porous superstructures boost lithium ion storage. J. Mater. Chem. A 2017, 5, 12096–12102.CrossRefGoogle Scholar
  15. [15]
    Yang, Y.; Wang, S. T.; Zhang, J. C.; Li, H. Y.; Tang, Z. L.; Wang, X. Nanosheet-assembled MoSe2 and S-doped MoSe2−x nanostructures for superior lithium storage properties and hydrogen evolution reactions. Inorg. Chem. Front. 2015, 2, 931–937.CrossRefGoogle Scholar
  16. [16]
    Jiao, Y. C.; Mukhopadhyay, A.; Ma, Y.; Yang, L.; Hafez, A. M.; Zhu, H. L. Ion transport nanotube assembled with vertically aligned metallic MoS2 for high rate lithium-ion batteries. Adv. Energy Mater. 2018, 8, 1702779.CrossRefGoogle Scholar
  17. [17]
    Xie, X. Q.; Makaryan, T.; Zhao, M. Q.; Van Aken, K. L.; Gogotsi, Y.; Wang, G. X. MoS2 nanosheets vertically aligned on carbon paper: A freestanding electrode for highly reversible sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1502161.CrossRefGoogle Scholar
  18. [18]
    Sun, W. Y.; Li, P.; Liu, X.; Shi, J. J.; Sun, H. M.; Tao, Z. L.; Li, F. J.; Chen, J. Size-controlled MoS2 nanodots supported on reduced graphene oxide for hydrogen evolution reaction and sodium-ion batteries. Nano Res. 2017, 10, 2210–2222.CrossRefGoogle Scholar
  19. [19]
    Yang, H.; Wang, M.; Liu, X. W.; Jiang, Y.; Yu, Y. MoS2 embedded in 3D interconnected carbon nanofiber film as a free-standing anode for sodium-ion batteries. Nano Res. 2018, 11, 3844–3853.CrossRefGoogle Scholar
  20. [20]
    Yang, Q. Q.; Liu, M. C.; Hu, Y. M.; Xu, Y.; Kong, L. B.; Kang, L. Facile synthesis of MoS2/graphite intercalated composite with enhanced electrochemical performance for sodium ion battery. J. Energy Chem. 2018, 27, 1208–1213.CrossRefGoogle Scholar
  21. [21]
    Lu, B.; Liu, J.; Hu, R. Z.; Wang, H.; Li, J. W.; Zhu, M. C@MoS2@PPy sandwich-like nanotube arrays as an ultrastable and high-rate flexible anode for Li/Na-ion batteries. Energy Storage Mater. 2018, 14, 118–128.CrossRefGoogle Scholar
  22. [22]
    Xia, W.; Mahmood, A.; Zou, R. Q.; Xu, Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837–1866.CrossRefGoogle Scholar
  23. [23]
    Ren, W. N.; Zhang, H. F.; Guan, C.; Cheng, C. W. Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Adv. Funct. Mater. 2017, 27, 1702116.CrossRefGoogle Scholar
  24. [24]
    Wang, Y. Y.; Kang, W. P.; Cao, D. W.; Zhang, M. H.; Kang, Z. X.; Xiao, Z. Y.; Wang, R. M.; Sun, D. F. A yolk-shelled Co9S8/MoS2-CN nanocomposite derived from a metal-organic framework as a high performance anode for sodium ion batteries. J. Mater. Chem. A 2018, 6, 4776–4782.CrossRefGoogle Scholar
  25. [25]
    Wang, X. L.; Li, G.; Seo, M. H.; Hassan, F. M.; Hoque, M. A.; Chen, Z. W. Sulfur atoms bridging few-layered MoS2 with S-doped graphene enable highly robust anode for lithium-ion batteries. Adv. Energy Mater. 2015, 5, 1501106.CrossRefGoogle Scholar
  26. [26]
    Chen, B.; Meng, Y. H.; He, F.; Liu, E. Z.; Shi, C. S.; He, C. N.; Ma, L. Y.; Li, Q. Y.; Li, J. J.; Zhao, N. Q. Thermal decomposition-reduced layer-by-layer nitrogen-doped graphene/MoS2/nitrogen-doped graphene heterostructure for promising lithium-ion batteries. Nano Energy 2017, 41, 154–163.CrossRefGoogle Scholar
  27. [27]
    Li, P.; Jeong, J. Y.; Jin, B. J.; Zhang, K.; Park, J. H. Vertically oriented MoS2 with spatially controlled geometry on nitrogenous graphene sheets for high-performance sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1703300.CrossRefGoogle Scholar
  28. [28]
    Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefGoogle Scholar
  29. [29]
    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.CrossRefGoogle Scholar
  30. [30]
    Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.CrossRefGoogle Scholar
  31. [31]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRefGoogle Scholar
  32. [32]
    Mortazavi, M.; Wang, C.; Deng, J. K.; Shenoy, V. B.; Medhekar, N. V. Ab initio characterization of layered MoS2 as anode for sodium-ion batteries. J. Power Sources 2014, 268, 279–286.CrossRefGoogle Scholar
  33. [33]
    Deng, J.; Li, H. B.; Wang, S. H.; Ding, D.; Chen, M. S.; Liu, C.; Tian, Z. Q.; Novoselov, K. S.; Ma, C.; Deng, D. H. et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat. Commun. 2017, 8, 14430.CrossRefGoogle Scholar
  34. [34]
    Duerloo, K. A. N.; Li, Y.; Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 2014, 5, 4214.CrossRefGoogle Scholar
  35. [35]
    He, T.; Xu, X. B.; Ni, B.; Lin, H. F.; Li, C. Z.; Hu, W. P.; Wang, X. Metal–organic framework based microcapsules. Angew. Chem. 2018, 130, 10305–10309.CrossRefGoogle Scholar
  36. [36]
    Gao, C. Y.; Liu, S. X.; Xie, L. H.; Ren, Y. H.; Cao, J. F.; Sun, C. Y. Design and construction of a microporous metal-organic framework based on the pillared-layer motif. Crystengcomm 2007, 9, 545–547.CrossRefGoogle Scholar
  37. [37]
    Zhang, P.; Qin, F. R.; Zou, L.; Wang, M. R.; Zhang, K.; Lai, Y. Q.; Li, J. Few-layered MoS2/C with expanding d-spacing as a high-performance anode for sodium-ion batteries. Nanoscale 2017, 9, 12189–12195.CrossRefGoogle Scholar
  38. [38]
    Wang, F.; Zhuo, H. Y.; Han, X. G.; Chen, W. M.; Sun, D. Foam-like CoO@N,S-codoped carbon composites derived from a well-designed N,S-rich Co-MOF for lithium-ion batteries. J. Mater. Chem. A 2017, 5, 22964–22969.CrossRefGoogle Scholar
  39. [39]
    Yue, H. Y.; Shi, Z. P.; Wang, Q. X.; Cao, Z. X.; Dong, H. Y.; Qiao, Y.; Yin, Y. H.; Yang, S. T. MOF-derived cobalt-doped ZnO@C composites as a high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 17067–17074.CrossRefGoogle Scholar
  40. [40]
    Zheng, F.; Huang, N.; Peng, R. C.; Ding, Y. Y.; Li, G. W.; Xia, Z. F.; Sun, P. P.; Sun, X. H.; Geng, J. G. Cobalt-doped molybdenum disulfide in-situ grown on graphite paper with excellent electrocatalytic activity for triiodide evolution. Electrochim. Acta 2018, 263, 328–337.CrossRefGoogle Scholar
  41. [41]
    Liu, G. L.; Robertson, A. W.; Li, M. M. J.; Kuo, W. C. H.; Darby, M. T.; Muhieddine, M. H.; Lin, Y. C.; Suenaga, K.; Stamatakis, M.; Warner, J. H. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 2017, 9, 810–816.CrossRefGoogle Scholar
  42. [42]
    Geng, X. M.; Jiao, Y. C.; Han, Y.; Mukhopadhyay, A.; Yang, L.; Zhu, H. L. Freestanding metallic 1T MoS2 with dual ion diffusion paths as high rate anode for sodium-ion batteries. Adv. Funct. Mater. 2017, 27, 1702998.CrossRefGoogle Scholar
  43. [43]
    Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313–318.CrossRefGoogle Scholar
  44. [44]
    Wu, J. X.; Lu, Z. H.; Li, K. K.; Cui, J.; Yao, S. S.; Haq, M. I. U.; Li, B. H.; Yang, Q. H.; Kang, F. Y.; Ciucci, F. et al. Hierarchical MoS2/carbon microspheres as long-life and high-rate anodes for sodium-ion batteries. J. Mater. Chem. A 2018, 6, 5668–5677.CrossRefGoogle Scholar
  45. [45]
    Hu, Z.; Wang, L. X.; Zhang, K.; Wang, J. B.; Cheng, F. Y.; Tao, Z. L.; Chen, J. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2014, 53, 12794–12798.CrossRefGoogle Scholar
  46. [46]
    Yang, C.; Feng, J. R.; Lv, F.; Zhou, J. H.; Lin, C. F.; Wang, K.; Zhang, Y. L.; Yang, Y.; Wang, W.; Li, J. B. et al. Metallic graphene-like VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism. Adv. Mater. 2018, 30, 1800036.CrossRefGoogle Scholar
  47. [47]
    Wang, W.; Jiang, B.; Qian, C.; Lv, F.; Feng, J. R.; Zhou, J. H.; Wang, K.; Yang, C.; Yang, Y.; Guo, S. J. Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 2018, 30, 1801812.CrossRefGoogle Scholar
  48. [48]
    Xiao, Y. H.; Su, D. C.; Wang, X. Z.; Wu, S. D.; Zhou, L. M.; Shi, Y.; Fang, S. M.; Cheng, H. M.; Li, F. CuS microspheres with tunable interlayer space and micropore as a high-rate and long-life anode for sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1800930.CrossRefGoogle Scholar
  49. [49]
    Gong, S.; Wang, Q. Boron-doped graphene as a promising anode material for potassium-ion batteries with a large capacity, high rate performance, and good cycling stability. J. Phys. Chem. C 2017, 121, 24418–24424.CrossRefGoogle Scholar
  50. [50]
    Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.CrossRefGoogle Scholar
  51. [51]
    Winter, M.; Besenhard, J. O. Electrochemical lithiation of tin and tinbased intermetallics and composites. Electrochim. Acta 1999, 45, 31–50.CrossRefGoogle Scholar
  52. [52]
    Kim, H.; Park, I.; Lee, S.; Kim, H.; Park, K. Y.; Park, Y. U.; Kim, H.; Kim, J.; Lim, H. D.; Yoon, W. S. et al. Understanding the electrochemical mechanism of the new iron-based mixed-phosphate Na4Fe3(PO4)2(P2O7) in a Na rechargeable battery. Chem. Mater. 2013, 25, 3614–3622.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Peihao Li
    • 1
  • Yong Yang
    • 1
  • Sheng Gong
    • 2
  • Fan Lv
    • 1
  • Wei Wang
    • 1
  • Yiju Li
    • 1
  • Mingchuan Luo
    • 1
  • Yi Xing
    • 1
  • Qian Wang
    • 1
    • 3
  • Shaojun Guo
    • 1
    • 4
  1. 1.Department of Materials Science & Engineering, College of EngineeringPeking UniversityBeijingChina
  2. 2.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Center for Applied Physics and Technology, College of EngineeringPeking UniversityBeijingChina
  4. 4.BIC-ESAT, College of EngineeringPeking UniversityBeijingChina

Personalised recommendations