Nano Research

, Volume 12, Issue 3, pp 543–548 | Cite as

Decorative near-infrared transmission filters featuring high-efficiency and angular-insensitivity employing 1D photonic crystals

  • Chengang Ji
  • Chenying Yang
  • Weidong ShenEmail author
  • Kyu-Tae Lee
  • Yueguang Zhang
  • Xu Liu
  • L. Jay GuoEmail author
Research Article


We present a new scheme for visibly-opaque but near-infrared-transmitting filters involving 7 layers based on one-dimensional ternary photonic crystals, with capabilities in reaching nearly 100% transmission efficiency in the near-infrared region. Different decorative reflection colors can be created by adding additional three layers while maintaining the near-infrared transmission performance. In addition, our proposed structural colors show great angular insensitivity up to ±60° for both transverse electric and transverse magnetic polarizations, which are highly desired in various fields. The facile strategy described here involves a simple deposition method for the fabrication, thereby having great potential in diverse applications such as image sensors, anti-counterfeit tag, and optical measurement systems.


near-infrared (NIR)-transmitting filters colored decorations photonic crystals multilayer structures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the National Science Foundation Grant (No. CMMI-1727918) for the partial support of this work. C. G. J. acknowledges the support by Rackham Graduate Student Research Grant from the University of Michigan.

Supplementary material

12274_2018_2249_MOESM1_ESM.pdf (1.4 mb)
Decorative near-infrared transmission filters featuring high-efficiency and angular-insensitivity employing 1D photonic crystals


  1. [1]
    Shcherbakova, D. M.; Verkhusha, V. V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat. Methods 2013, 10, 751–754.CrossRefGoogle Scholar
  2. [2]
    Kim, S.; Lim, Y. T.; Soltesz, E. G.; De Grand, A. M.; Lee, J.; Nakayama, A.; Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 2004, 22, 93–97.CrossRefGoogle Scholar
  3. [3]
    Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 2003, 7, 626–634.CrossRefGoogle Scholar
  4. [4]
    Park, H.; Crozier, K. B. Multispectral imaging with vertical silicon nanowires. Sci. Rep. 2013, 3, 2460.CrossRefGoogle Scholar
  5. [5]
    Koyama, S.; Inaba, Y.; Kasano, M.; Murata, T. A day and night vision MOS imager with robust photonic-crystal-based RGB-and-IR. IEEE Trans. Electron Devices 2008, 55, 754–759.CrossRefGoogle Scholar
  6. [6]
    Barone, P. W.; Baik, S.; Heller, D. A.; Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 2005, 4, 86–92.CrossRefGoogle Scholar
  7. [7]
    Yuan, L.; Lin, W. Y.; Zhao, S.; Gao, W. S.; Chen, B.; He, L. W.; Zhu, S. A. A unique approach to development of near-infrared fluorescent sensors for in vivo imaging. J. Am. Chem. Soc. 2012, 134, 13510–13523.CrossRefGoogle Scholar
  8. [8]
    Werle, P.; Slemr, F.; Maurer, K.; Kormann, R.; Mücke, R.; Jänker, B. Near- and mid-infrared laser-optical sensors for gas analysis. Opt. Lasers Eng. 2002, 37, 101–114.CrossRefGoogle Scholar
  9. [9]
    Ghosh, S.; Cherumukkil, S.; Suresh, C. H.; Ajayaghosh, A. A supramolecular nanocomposite as a near-infrared-transmitting optical filter for security and forensic applications. Adv. Mater. 2017, 29, 1703783.CrossRefGoogle Scholar
  10. [10]
    Tucker, R. J. Visibly opaque infrared transmitting optical filter containing a combination of copper and vanadyl phthalocyanine sulfonamides. U.S. Patent 4,039,467, August 2, 1977.Google Scholar
  11. [11]
    Momose, M.; Todokoro, A. Infrared transmissive thermoplastic composition, and articles formed therefrom. U.S. Patent 7,727,418, June 1, 2010.Google Scholar
  12. [12]
    Morgan, M. D.; Horne, W. E.; Sundaram, V.; Wolfe, J. C.; Pendharkar, S. V.; Tiberio, R. Application of optical filters fabricated by masked ion beam lithography. J. Vac. Sci. Technol. B 1996, 14, 3903–3906.CrossRefGoogle Scholar
  13. [13]
    Heinzel, A.; Boerner, V.; Gombert, A.; Bläsi, B.; Wittwer, V.; Luther, J. Radiation filters and emitters for the NIR based on periodically structured metal surfaces. J. Mod. Opt. 2000, 47, 2399–2419.CrossRefGoogle Scholar
  14. [14]
    Zhang, J. J.; Xiao, S. S.; Jeppesen, C.; Kristensen, A.; Mortensen, N. A. Electromagnetically induced transparency in metamaterials at near-infrared frequency. Opt. Express 2010, 18, 17187–17192.CrossRefGoogle Scholar
  15. [15]
    Zhang, S.; Fan, W. J.; Malloy, K. J.; Brueck, S. R. J.; Panoiu, N. C.; Osgood, R. M. Near-infrared double negative metamaterials. Opt. Express 2005, 13, 4922–4930.CrossRefGoogle Scholar
  16. [16]
    Sokar, A. A. Z.; Hutter, F. X.; Burghartz, J. N. Generation of red color and near infrared bandpass filters using nano-scale plasmonic structures. In Proceedings of SPIE 9502, Metamaterials X, Prague, Czech Republic, 2015, p 95020U.Google Scholar
  17. [17]
    Yang, Z. M.; Zhou, Y. M.; Chen, Y. Q.; Wang, Y. S.; Dai, P.; Zhang, Z. G.; Duan, H. G. Reflective color filters and monolithic color printing based on asymmetric fabry–perot cavities using nickel as a broadband absorber. Adv. Opt. Mater. 2016, 4, 1196–1202.CrossRefGoogle Scholar
  18. [18]
    Yang, Z. M.; Chen, Y. Q.; Zhou, Y. M.; Wang, Y. S.; Dai, P.; Zhu, X. P.; Duan, H. G. Microscopic interference full-color printing using grayscale-patterned fabry–perot resonance cavities. Adv. Opt. Mater. 2017, 5, 1700029.CrossRefGoogle Scholar
  19. [19]
    Macleod, H. A. Thin-film Optical Filters, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2001.CrossRefGoogle Scholar
  20. [20]
    Hawkins, G. J.; Sherwood, R. E.; Barrett, B. M.; Wallace, M.; Orr, H. J. B.; Matthews, K.; Bisht, S. High-performance infrared narrow-bandpass filters for the Indian National Satellite System meteorological instrument (INSAT-3D). Appl. Opt. 2008, 47, 2346–2356.CrossRefGoogle Scholar
  21. [21]
    Orr, H. J. B.; Wallace, M.; Dalton, G. B. Near-infrared bandpass filters with improved transparency for 1000 nm spectral region using sputtered silicon compound films. In Proceedings of SPIE 7018, Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation, Marseille, France, 2008, p 701830.CrossRefGoogle Scholar
  22. [22]
    Piegari, A.; Sytchkova, A. K.; Di Sarcina, I.; Bulir, J. Visible and near-infrared filters for miniaturized spectrometers. In Proceedings of SPIE 7018, Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation, Marseille, France, 2008, p 701855.CrossRefGoogle Scholar
  23. [23]
    Kumar, S. A.; Nagendra, C. L.; Shanbhogue, H. G.; Thutupalli, G. K. M. Near-infrared bandpass filters from Si/SiO2 multilayer coatings. Opt. Eng. 1999, 38, 368–380.CrossRefGoogle Scholar
  24. [24]
    Lu, J. High performance infrared narrow band pass filters for infrared sensors and systems. In SENSOR + TEST Conference 2009, Nürnberg, Germany, 2009, pp 275–280.Google Scholar
  25. [25]
    Ohtera, Y.; Onuki, T.; Inoue, Y.; Kawakami, S. Multichannel photonic crystal wavelength filter array for near-infrared wavelengths. J. Lightwave Technol. 2007, 25, 499–503.CrossRefGoogle Scholar
  26. [26]
    Ufford, C.; Baumeister, P. Graphical aids in the use of equivalent index in multilayer-filter design. J. Opt. Soc. Am. 1974, 64, 329–334.CrossRefGoogle Scholar
  27. [27]
    Pettersson, L. A. A.; Roman, L. S.; Inganäs, O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 1999, 86, 487–496.CrossRefGoogle Scholar
  28. [28]
    Awasthi, S. K.; Ojha, S. P. Design of a tunable optical filter by using a one-dimensional ternary photonic band gap material. Prog. Electromagn. Res. M 2008, 4, 117–132.CrossRefGoogle Scholar
  29. [29]
    Winn, J. N.; Fink, Y.; Fan, S. H.; Joannopoulos, J. D. Omnidirectional reflection from a one-dimensional photonic crystal. Opt. Lett. 1998, 23, 1573–1575.CrossRefGoogle Scholar
  30. [30]
    Fink, Y.; Winn, J. N.; Fan, S. H.; Chen, C. P.; Michel, J.; Joannopoulos, J. D.; Thomas, E. L. A dielectric omnidirectional reflector. Science 1998, 282, 1679–1682.CrossRefGoogle Scholar
  31. [31]
    Lee, K.-T.; Ji, C. G.; Banerjee, D.; Guo, L. J. Angular- and polarization-independent structural colors based on 1D photonic crystals. Laser Photon. Rev. 2015, 9, 354–362.CrossRefGoogle Scholar
  32. [32]
    Song, H. M.; Guo, L. Q.; Liu, Z. J.; Liu, K.; Zeng, X.; Ji, D. X.; Zhang, N.; Hu, H. F.; Jiang, S. H.; Gan, Q. Q. Nanocavity enhancement for ultra-thin film optical absorber. Adv. Mater. 2014, 26, 2737–2743.CrossRefGoogle Scholar
  33. [33]
    Liu, D.; Li, Q. Sub-nanometer planar solar absorber. Nano Energy 2017, 34, 172–180.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer ScienceThe University of MichiganAnn ArborUSA
  2. 2.State Key Laboratory of Modern Optical Instrumentation, Department of Optical EngineeringZhejiang UniversityHangzhouChina
  3. 3.Department of PhysicsInha UniversityIncheonRepublic of Korea

Personalised recommendations