Boosting the rate capability of multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies for sodium-ion batteries

  • Ying Wu
  • Zengxi Wei
  • Rui Xu
  • Yue Gong
  • Lin Gu
  • Jianmin Ma
  • Yan YuEmail author
Research Article


The use of TiO2 as an anode in rechargeable sodium-ion batteries (NIBs) is hampered by intrinsic low electronic conductivity of TiO2 and inferior electrode kinetics. Here, a high-performance TiO2 electrode for NIBs is presented by designing a multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies (Cu-MPTO). The in-situ grown well-dispersed copper nanodots of about 3 nm on TiO2 surface could significantly enhance electronic conductivity of the TiO2 fibers. The one-dimensional multichannel porous structure could facilitate the electrolyte to soak in, leading to short transport path of Na+ through carbon toward the TiO2 nanoparticle. The Cu2+-doping induced oxygen vacancies could decrease the bandgap of TiO2, resulting in easy electron trapping. With this strategy, the Cu-MPTO electrodes render an outstanding rate performance for NIBs (120 mAh·g−1 at 20 C) and a superior cycling stability for ultralong cycle life (120 mAh·g−1 at 20 C and 96.5% retention over 2,000 cycles). Density functional theory (DFT) calculations also suggest that Cu2+ doping can enhance the conductivity and electron transfer of TiO2 and lower the sodiation energy barrier. This strategy is confirmed to be a general process and could be extended to improve the performance of other materials with low electronic conductivity applied in energy storage systems.


multichannel porous TiO2 nanofibers Cu nanodots Cu2+ doping sodium ion batteries density functional theory (DFT) calculations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key R&D Research Program of China (Nos. 2018YFB0905400 and 2016YFB0100305), the National Natural Science Foundation of China (Nos. 51622210 and 51872277), the Fundamental Research Funds for the Central Universities (No. WK3430000004), and the DNL cooperation Fund, CAS (No. DNL180310).

Supplementary material

12274_2018_2248_MOESM1_ESM.pdf (2.5 mb)
Boosting the rate capability of multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies for sodium-ion batteries


  1. [1]
    Fang, Y. J.; Yu, X. Y.; Lou, X. W. A practical high-energy cathode for sodium-ion batteries based on uniform P2-Na0.7CoO2. microspheres. Angew. Chem., Int. Ed. 2017, 56, 5801–5805.CrossRefGoogle Scholar
  2. [2]
    Qiu, S.; Xiao, L. F.; Sushko, M. L.; Han, K. S.; Shao, Y. Y.; Yan, M. Y.; Liang, X. M.; Mai, L. Q.; Feng, J. W.; Cao, Y. L. et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 2017, 7, 1700403.CrossRefGoogle Scholar
  3. [3]
    Liu, H.; Liu, X. X.; Li, W.; Guo, X.; Wang, Y.; Wang, G. X.; Zhao, D. Y. Porous carbon composites for next generation rechargeable lithium batteries. Adv. Energy Mater. 2017, 7, 1700283.CrossRefGoogle Scholar
  4. [4]
    Zhao, J.; Zhao, L. W.; Dimov, N.; Okada S.; Nishida, T. Electrochemical and thermal properties of a-NaFeO2 cathode for Na-ion batteries. J. Electrochem. Soc. 2013, 160, A3077–A3081.CrossRefGoogle Scholar
  5. [5]
    Fang, C.; Huang, Y. H.; Zhang, W. X.; Han, J. T.; Deng, Z.; Cao, Y. L.; Yang, H. X. Routes to high energy cathodes of sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1501727.CrossRefGoogle Scholar
  6. [6]
    Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.CrossRefGoogle Scholar
  7. [7]
    Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. V.; Yang, Z. G.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783–3787.CrossRefGoogle Scholar
  8. [8]
    Jiang, Y.; Wu, Y.; Chen, Y. X.; Qi, Z. Y.; Shi, J. A.; Gu, L.; Yu, Y. Design nitrogen (N) and sulfur (S) co-doped 3D graphene network architectures for high-performance sodium storage. Small 2018, 14, 1703471.CrossRefGoogle Scholar
  9. [9]
    Sangster, J. C-Na (carbon-sodium) system. J. Phase Equilib. Diff. 2007, 28, 571–579.CrossRefGoogle Scholar
  10. [10]
    Stevens, D.; Dahn, J. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271–1273.CrossRefGoogle Scholar
  11. [11]
    Liu, J.; Yu, L. T.; Wu, C.; Wen, Y. R.; Yin, K. B.; Chiang, F. K.; Hu, R. Z.; Liu, J. W.; Sun, L. T.; Gu, L. et al. New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk–shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett. 2017, 17, 2034–2042.CrossRefGoogle Scholar
  12. [12]
    Li, W. H.; Hu, S. H.; Luo, X. Y.; Li, Z. L.; Sun, X. Z.; Li, M. S.; Liu, F. F.; Yu, Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 2017, 29, 1605820.CrossRefGoogle Scholar
  13. [13]
    Yang, X.; Zhang, R. Y.; Zhao, J.; Wei, Z. X.; Wang, D. X.; Bie, X. F.; Gao, Y.; Wang, J.; Du, F.; Chen, G. Amorphous tin-based composite oxide: A high-rate and ultralong-life sodium-ion-storage material. Adv. Energy Mater. 2018, 8, 1701827.CrossRefGoogle Scholar
  14. [14]
    Jian, Z. L.; Zhao, B.; Liu, P.; Li, F. J.; Zheng, M. B.; Chen, M. W.; Shi, Y.; Zhou, H. S. Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem. Commun. 2014, 50, 1215–1217.CrossRefGoogle Scholar
  15. [15]
    Zhang, K.; Hu, Z.; Liu, X.; Tao, Z. L.; Chen, J. FeSe2 microspheres as a high-performance anode material for Na-ion batteries. Adv. Mater. 2015, 27, 3305–3309.CrossRefGoogle Scholar
  16. [16]
    Wei, X.; Li, W. H.; Shi, J. A.; Gu, L.; Yu, Y. FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage. ACS Appl. Mater. Interfaces 2015, 7, 27804–27809.CrossRefGoogle Scholar
  17. [17]
    Wu, C.; Dou, S. X.; Yu, Y. The state and challenges of anode materials based on conversion reactions for sodium storage. Small 2018, 14, 1703671.CrossRefGoogle Scholar
  18. [18]
    Wu, L. M.; Bresser, D.; Buchholz, D.; Giffin, G. A.; Castro, C. R.; Ochel, A.; Passerini, S. Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 2015, 5, 1401142.CrossRefGoogle Scholar
  19. [19]
    Kim, K. T.; Ali, G.; Chung, K. Y.; Yoon, C. S.; Yashiro, H.; Sun, Y. K.; Lu, J.; Amine, K.; Myung, S. T. Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett. 2014, 14, 416–422.CrossRefGoogle Scholar
  20. [20]
    Liu, H.; Li, W.; Shen, D. K.; Zhao, D. Y.; Wang, G. X. Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 2015, 137, 13161–13166.CrossRefGoogle Scholar
  21. [21]
    Yu, L. T.; Liu, J.; Xu, X. J.; Zhang, L. G.; Hu, R. Z.; Liu, J. W.; Ouyang, L. Z.; Yang, L. C.; Zhu, M. Ilmenite nanotubes for high stability and high rate sodium-ion battery anodes. ACS Nano 2017, 11, 5120–5129.CrossRefGoogle Scholar
  22. [22]
    Shin, J. Y.; Joo, J. H.; Samuelis, D.; Maier, J. Oxygen-deficient TiO2-d nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem. Mater. 2012, 24, 543–551.CrossRefGoogle Scholar
  23. [23]
    Zhu, X. M.; Li, Q.; Fang, Y. J.; Liu, X. L.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Graphene-modified TiO2 microspheres synthesized by a facile spray-drying route for enhanced sodium-ion storage. Part. Part. Syst. Char. 2016, 33, 545–552.CrossRefGoogle Scholar
  24. [24]
    Mo, R. W.; Lei, Z. Y.; Sun, K. N.; Rooney, D. Facile synthesis of anatase TiO2 quantum-dot/graphene-nanosheet composites with enhanced electrochemical performance for lithium-ion batteries. Adv. Mater. 2014, 26, 2084–2088.CrossRefGoogle Scholar
  25. [25]
    Peng, C. X.; Chen, B. D.; Qin, Y.; Yang, S. H.; Li, C. Z.; Zuo, Y. H.; Liu, S. Y.; Yang, J. H. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 2012, 6, 1074–1081.CrossRefGoogle Scholar
  26. [26]
    Xu, G. L.; Xiao, L. S.; Sheng, T.; Liu, J. Z.; Hu, Y. X.; Ma, T. Y.; Amine, R.; Xie, Y. Y.; Zhang, X. Y.; Liu, Y. Z. et al. Electrostatic self-assembly enabling integrated bulk and interfacial sodium storage in 3D titania-graphene hybrid. Nano Lett. 2018, 18, 336–346.CrossRefGoogle Scholar
  27. [27]
    Nong, S. Y.; Dong, W. J.; Yin, J. W.; Dong, B. W.; Lu, Y.; Yuan, X. T.; Wang, X.; Bu, K. J.; Chen, M. Y.; Jiang, S. D. et al. Well-dispersed ruthenium in mesoporous crystal TiO2 as an advanced electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 5719–5727.CrossRefGoogle Scholar
  28. [28]
    Li, C. C.; Wang, T.; Zhao, Z. J.; Yang, W. M.; Li, J. F.; Li, A.; Yang, Z. L.; Ozin, G. A.; Gong, J. L. Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes. Angew. Chem., Int. Ed. 2018, 57, 5278–5282.CrossRefGoogle Scholar
  29. [29]
    Khalid, N. R.; Ahmed, E.; Hong, Z. L.; Ahmad, M.; Zhang, Y. W.; Khalid, S. Cu-doped TiO2 nanoparticles/graphene composites for efficient visible-light photocatalysis. Ceram. Int. 2013, 39, 7107–7113.CrossRefGoogle Scholar
  30. [30]
    Guo, Y. G.; Hu, Y. S.; Sigle, W.; Maier, J. Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks. Adv. Mater. 2007, 19, 2087–2091.CrossRefGoogle Scholar
  31. [31]
    Yu, Y.; Yan, C. L.; Gu, L.; Lang, X. Y.; Tang, K.; Zhang, L.; Hou, Y.; Wang, Z. F.; Chen, M. W.; Schmidt, O. G. et al. Three-dimensional (3D) bicontinuous Au/amorphous-Ge thin films as fast and high-capacity anodes for lithium-ion batteries. Adv. Energy Mater. 2013, 3, 281–285.CrossRefGoogle Scholar
  32. [32]
    Wu, Y.; Liu, X. W.; Yang, Z. Z.; Gu, L.; Yu, Y. Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries. Small 2016, 12, 3522–3529.CrossRefGoogle Scholar
  33. [33]
    Wu, Y.; Jiang, Y.; Shi, J. N.; Gu, L.; Yu, Y. Multichannel porous TiO2 hollow nanofibers with rich oxygen vacancies and high grain boundary density enabling superior sodium storage performance. Small 2017, 13, 1700129.CrossRefGoogle Scholar
  34. [34]
    Zhang, Y.; Ding, Z. Y.; Foster, C. W.; Banks, C. E.; Qiu, X. Q.; Ji, X. B. Oxygen vacancies evoked blue TiO2(B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv. Funct. Mater. 2017, 27, 1700856.CrossRefGoogle Scholar
  35. [35]
    Ni, J. F.; Fu, S. D.; Wu, C.; Maier, J.; Yu, Y.; Li, L. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv. Mater. 2016, 28, 2259–2265.CrossRefGoogle Scholar
  36. [36]
    Ni, J. F.; Fu, S. D.; Yuan, Y. F.; Ma, L.; Jiang, Y.; Li, L.; Lu, J. Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation. Adv. Mater. 2018, 30, 1704337.CrossRefGoogle Scholar
  37. [37]
    Choudhury, B.; Dey, M.; Choudhury, A. Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles. Int. Nano Lett. 2013, 3, 25.CrossRefGoogle Scholar
  38. [38]
    Hong, Y. J.; Yoon, J. W.; Lee, J. H.; Kang, Y. C. A new concept for obtaining SnO2 fiber-in-tube nanostructures with superior electrochemical properties. Chem.–Eur. J. 2015, 21, 371–376.CrossRefGoogle Scholar
  39. [39]
    Peng, S. J.; Li, L. L.; Hu, Y. X.; Srinivasan, M.; Cheng, F. Y.; Chen, J.; Ramakrishna, S. Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano 2015, 9, 1945–1954.CrossRefGoogle Scholar
  40. [40]
    Zhang, G. Q.; Xia, B. Y.; Xiao, C.; Yu, L.; Wang, X.; Xie, Y.; Lou, X. W. General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries. Angew. Chem., Int. Ed. 2013, 52, 8643–8647.CrossRefGoogle Scholar
  41. [41]
    Xu, G. B.; Li, W.; Yang, L. W.; Wei, X. L.; Ding, J. W.; Zhong, J. X.; Chu, P. K. Highly-crystalline ultrathin Li4Ti5O12 nanosheets decorated with silver nanocrystals as a high-performance anode material for lithium ion batteries. J. Power Sources 2015, 276, 247–254.CrossRefGoogle Scholar
  42. [42]
    Krajewski, M.; Michalska, M.; Hamankiewicz, B.; Ziolkowska, D.; Korona, K. P.; Jasinski, J. B.; Kaminska, M.; Lipinska, L.; Czerwinski, A. Li4Ti5O12 modified with Ag nanoparticles as an advanced anode material in lithium-ion batteries. J. Power Sources 2014, 245, 764–771.CrossRefGoogle Scholar
  43. [43]
    Liu, Z. M.; Zhang, N. Q.; Wang, Z. J.; Sun, K. N. Highly dispersed Ag nanoparticles (< 10 nm) deposited on nanocrystalline Li4Ti5O12 demonstrating high-rate charge/discharge capability for lithium-ion battery. J. Power Sources 2012, 205, 479–482.CrossRefGoogle Scholar
  44. [44]
    Hou, J. G.; Sun, Y. Q.; Wu, Y. Z.; Cao, S. Y.; Sun, L. C. Promoting active sites in core–shell nanowire array as Mott–Schottky electrocatalysts for efficient and stable overall water splitting. Adv. Funct. Mater. 2018, 28, 1704447.CrossRefGoogle Scholar
  45. [45]
    Valero, J. M.; Obregón, S.; Colón, G. Active site considerations on the photocatalytic H2 evolution performance of Cu-Doped TiO2 obtained by different doping methods. ACS Catal. 2014, 4, 3320–3329.CrossRefGoogle Scholar
  46. [46]
    Zhang, J. Z.; Zhang, J.; Bao, T. Z.; Xie, X. H.; Xia, B. J. Electrochemical and stress characteristics of SiO/Cu/expanded graphite composite as anodes for lithium ion batteries. J. Power Sources 2017, 348, 16–20.CrossRefGoogle Scholar
  47. [47]
    Chen, J.; Song, W. X.; Hou, H. S.; Zhang, Y.; Jing, M. J.; Jia, X. N.; Ji, X. B. Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries. Adv. Funct. Mater. 2015, 25, 6793–6801.CrossRefGoogle Scholar
  48. [48]
    Feng, J. X.; Wu, J. Q.; Tong, Y. X.; Li, G. R. Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption. J. Am. Chem. Soc. 2018, 140, 610–617.CrossRefGoogle Scholar
  49. [49]
    Ni, D. W.; Shen, H. Y.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Synthesis of high efficient Cu/TiO2 photocatalysts by grinding and their size-dependent photocatalytic hydrogen production. Appl. Surf. Sci. 2017, 409, 241–249.CrossRefGoogle Scholar
  50. [50]
    Su, T.; Yang, Y. L.; Na, Y.; Fan, R. Q.; Li, L.; Wei, L. G.; Yang, B.; Cao, W. W. An insight into the role of oxygen vacancy in hydrogenated TiO2 nanocrystals in the performance of dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2015, 7, 3754–3763.CrossRefGoogle Scholar
  51. [51]
    Grunin, V. S.; Davtyan, G. D.; Ioffe, V. A.; Patrina, I. B. EPR of Cu2+ and radiation centres in anatase (TiO2). Phys. Status Solidi 1976, 77, 85–92.CrossRefGoogle Scholar
  52. [52]
    You, M.; Kim, T. G.; Sung, Y. M. Synthesis of cu-doped TiO2 nanorods with various aspect ratios and dopant concentrations. Cryst. Growth Des. 2009, 10, 983–987.CrossRefGoogle Scholar
  53. [53]
    Bensouici, F.; Bououdina, M.; Dakhel, A. A.; Tala-Ighil, R.; Tounane, M.; Iratni, A.; Souier, T.; Liu, S.; Cai, W. Optical, structural and photocatalysis properties of Cu-doped TiO2 thin films. Appl. Surf. Sci. 2017, 395, 110–116.CrossRefGoogle Scholar
  54. [54]
    Xu, B.; Dong, L.; Chen, Y. Influence of CuO loading on dispersion and reduction behavior of CuO/TiO2 (anatase) system. J. Chem. Soc. Faraday Trans. 1998, 94, 1905–1909.CrossRefGoogle Scholar
  55. [55]
    Kittel, C. Introduction to Solid State Physics; 7th ed. Wiley: New York, 1996.Google Scholar
  56. [56]
    Zhou, W.; Li, W.; Wang, J. Q.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K. F.; Wang, L.; Fu, H. G.; Zhao, D. Y. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 2014, 136, 9280–9283.CrossRefGoogle Scholar
  57. [57]
    Aguilar, T.; Navas, J.; Alcántara, R.; Fernández-Lorenzo, C.; Gallardo, J. J.; Blanco, G.; Martín-Calleja, J. A route for the synthesis of Cu-doped TiO2 nanoparticles with a very low band gap. Chem. Phys. Lett. 2013, 571, 49–53.CrossRefGoogle Scholar
  58. [58]
    Shah, M. W.; Zhu, Y. Q.; Fan, X. Y.; Zhao, J.; Li, Y. X.; Asim, S.; Wang, C. Y. Facile synthesis of defective TiO2-x nanocrystals with high surface area and tailoring bandgap for visible-light photocatalysis. Sci. Rep. 2015, 5, 15804.CrossRefGoogle Scholar
  59. [59]
    Fang, W. Z.; Zhou, Y.; Dong, C. C.; Xing, M. Y.; Zhang, J. L. Enhanced photocatalytic activities of vacuum activated TiO2 catalysts with Ti3+ and N co-doped. Catal. Today 2016, 266, 188–196.CrossRefGoogle Scholar
  60. [60]
    Jin, Z.; Liu, C.; Qi, K.; Cui, X. Q. Photo-reduced Cu/CuO nanoclusters on TiO2 nanotube arrays as highly efficient and reusable catalyst. Sci. Rep. 2017, 7, 39695.CrossRefGoogle Scholar
  61. [61]
    Oh, S. M.; Hwang, J. Y.; Yoon, C. S.; Lu, J.; Amine, K.; Belharouak, I.; Sun, Y. K. High electrochemical performances of microsphere C-TiO2 anode for sodium-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 11295–11301.CrossRefGoogle Scholar
  62. [62]
    Wang, W. S.; Sa, Q. N.; Chen, J. H.; Wang, Y.; Jung, H.; Yin, Y. D. Porous TiO2/C nanocomposite shells as a high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 6478–6483.CrossRefGoogle Scholar
  63. [63]
    Xu, Y.; Zhou, M.; Wen, L. Y.; Wang, C. L.; Zhao, H. P.; Mi, Y.; Liang, L. Y.; Fu, Q.; Wu, M. H.; Lei, Y. Highly ordered three-dimensional Ni-TiO2 nanoarrays as sodium ion battery anodes. Chem. Mater. 2015, 27, 4274–4280.CrossRefGoogle Scholar
  64. [64]
    Jiang, Y.; Yang, Z. Z.; Li, W. H.; Zeng, L. C.; Pan, F. S.; Wang, M.; Wei, X.; Hu, G. T.; Gu, L.; Yu, Y. Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodiumion batteries. Adv. Energy Mater. 2015, 5, 1402104.CrossRefGoogle Scholar
  65. [65]
    Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphenecoupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929.CrossRefGoogle Scholar
  66. [66]
    Zhou, M.; Xu, Y.; Xiang, J. X.; Wang, C. L.; Liang, L. Y.; Wen, L. Y.; Fang, Y. G.; Mi, Y.; Lei, Y. Sodium-ion batteries: Understanding the orderliness of atomic arrangement toward enhanced sodium storage (Adv. Energy Mater. 23/2016). Adv. Energy Mater. 2016, 6, 1600448.CrossRefGoogle Scholar
  67. [67]
    Zhu, Y.; Peng, L. L.; Chen, D. H.; Yu, G. H. Intercalation pseudocapacitance in ultrathin VOPO4 nanosheets: Toward high-rate alkali-ion-based electrochemical energy storage. Nano Lett. 2015, 16, 742–747.CrossRefGoogle Scholar
  68. [68]
    Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.CrossRefGoogle Scholar
  69. [69]
    Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous a-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.CrossRefGoogle Scholar
  70. [70]
    Chen, Z.; Augustyn, V.; Jia, X. L.; Xiao, Q. F.; Dunn, B.; Lu, Y. F. Highperformance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 2012, 6, 4319–4327.CrossRefGoogle Scholar
  71. [71]
    Zhu, Y. E.; Yang, L. P.; Sheng, J.; Chen, Y. N.; Gu, H. C.; Wei, J. P.; Zhou, Z. Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv. Energy Mater. 2017, 7, 1701222.CrossRefGoogle Scholar
  72. [72]
    He, H. N.; Huang, D.; Pang, W. K.; Sun, D.; Wang, Q.; Tang, Y. G.; Ji, X. B.; Guo, Z. P.; Wang, H. Y. Plasma-induced amorphous shell and deep cation-site S doping endow TiO2 with extraordinary sodium storage performance. Adv. Mater. 2018, 30, 1801013.CrossRefGoogle Scholar
  73. [73]
    Xu, Z. L.; Lim, K.; Park, K. Y.; Yoon, G.; Seong, W. M.; Kang, K. Engineering solid electrolyte interphase for pseudocapacitive anatase TiO2 anodes in sodium-ion batteries. Adv. Funct. Mater. 2018, 28, 1802099.CrossRefGoogle Scholar
  74. [74]
    Zhang, Y.; Wang, C. W.; Hou, H. S.; Zou, G. Q.; Ji, X. B. Nitrogen doped/carbon tuning yolk-like TiO2 and its remarkable impact on sodium storage performances. Adv. Energy Mater. 2017, 7, 1600173.CrossRefGoogle Scholar
  75. [75]
    Zhang, Y.; Foster, C. W.; Banks, C. E.; Shao, L. D.; Hou, H. S.; Zou, G. Q.; Chen, J.; Huang, Z. D.; Ji, X. B. Graphene-rich wrapped petal-like rutile TiO2 tuned by carbon dots for high-performance sodium storage. Adv. Mater. 2016, 28, 9391–9399.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ying Wu
    • 1
  • Zengxi Wei
    • 2
  • Rui Xu
    • 1
  • Yue Gong
    • 3
  • Lin Gu
    • 3
    • 4
  • Jianmin Ma
    • 2
  • Yan Yu
    • 1
    • 5
    • 6
    Email author
  1. 1.Department of Materials Science and Engineering, University of Science and Technology of China, Key Laboratory of Materials for Energy ConversionChinese Academy of Sciences (CAS)HefeiChina
  2. 2.School of Physics and ElectronicsHunan UniversityChangshaChina
  3. 3.Beijing Laboratory for Electron Microscopy, Institute of PhysicsChinese Academy of Sciences (CAS)BeijingChina
  4. 4.Collaborative Innovation Center of Quantum MatterBeijingChina
  5. 5.State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiChina
  6. 6.Dalian National Laboratory for Clean Energy (DNL)Chinese Academy of Sciences (CAS)DalianChina

Personalised recommendations