Advertisement

Nano Research

, Volume 12, Issue 3, pp 531–536 | Cite as

Black phosphorus inverter devices enabled by in-situ aluminum surface modification

  • Yue Zheng
  • Zehua Hu
  • Cheng Han
  • Rui Guo
  • Du Xiang
  • Bo Lei
  • Yanan Wang
  • Jun He
  • Min Lai
  • Wei ChenEmail author
Research Article
  • 85 Downloads

Abstract

Two-dimensional black phosphorus (BP) generally exhibits a hole-dominated transport characteristic when configured as field-effect transistor devices. The effective control of charge carrier type and concentration is very crucial for the application of BP in complementary electronics. Herein, we report a facile and effective electron doping methodology on BP, through in situ surface modification with aluminum (Al). The electron mobility of few-layer BP is found to be largely enhanced to ∼ 10.6 cm2·V–1·s–1 by over 6 times after aluminum modification. In situ photoelectron spectroscopy characterization reveals the formation of Al–P covalent bond at the interface, which can also serve as local gate to tune the transport properties in BP layers. Finally, a spatially-controlled aluminum doping technique is employed to establish a p–n homojunction on a single BP flake, and hence to realize the complementary inverter devices, where the highest gain value of ∼ 33 is obtained.

Keywords

black phosphorus aluminum surface doping electron mobility inverter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21573156 and 21872100), Natural Science Foundation of Jiangsu Province (No. BK20170005), Singapore MOE Grants R143-000-652-112 and R143-000-A43-114, and Fundamental Research Foundation of Shenzhen (No. JCYJ20170817100405375).

Supplementary material

12274_2018_2246_MOESM1_ESM.pdf (2.9 mb)
Black phosphorus inverter devices enabled by in-situ aluminum surface modification

References

  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D. A.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.CrossRefGoogle Scholar
  3. [3]
    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.CrossRefGoogle Scholar
  4. [4]
    Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on twodimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.CrossRefGoogle Scholar
  5. [5]
    Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.CrossRefGoogle Scholar
  6. [6]
    Liu, H.; Neal, A. T.; Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563–8569.CrossRefGoogle Scholar
  7. [7]
    Yao, B. C.; Huang, S.-W.; Liu, Y.; Vinod, A., K.; Choi, C.; Hoff, M.; Li, Y. N.; Yu, M. B.; Feng, Z. Y.; Kwong, D. L. et al. Gate-tunable frequency combs in graphene–nitride microresonators. Nature 2018, 558, 410–414.CrossRefGoogle Scholar
  8. [8]
    Xiang, D.; Liu, T.; Xu, J. L.; Tan, J. Y.; Hu, Z. H.; Lei, B.; Zheng, Y.; Wu, J.; Neto, A. H. C.; Liu, L. et al. Two-dimensional multibit optoelectronic memory with broadband spectrum distinction. Nat. Commun. 2018, 9, 2966.CrossRefGoogle Scholar
  9. [9]
    Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.CrossRefGoogle Scholar
  10. [10]
    Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.CrossRefGoogle Scholar
  11. [11]
    Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.CrossRefGoogle Scholar
  12. [12]
    Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.CrossRefGoogle Scholar
  13. [13]
    Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.CrossRefGoogle Scholar
  14. [14]
    Ovchinnikov, D.; Allain, A.; Huang, Y. S.; Dumcenco, D.; Kis, A. Electrical transport properties of single-layer WS2. ACS Nano 2014, 8, 8174–8181.CrossRefGoogle Scholar
  15. [15]
    Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. M.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 2018, 557, 696–700.CrossRefGoogle Scholar
  16. [16]
    Allain, A.; Kis, A. Electron and hole mobilities in single-layer WSe2. ACS Nano 2014, 8, 7180–7185.CrossRefGoogle Scholar
  17. [17]
    Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.CrossRefGoogle Scholar
  18. [18]
    Ling, X.; Wang, H.; Huang, S. X.; Xia, F. N.; Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 2015, 112, 4523–4530.CrossRefGoogle Scholar
  19. [19]
    Liu, H.; Du, Y. C.; Deng, Y. X.; Ye, P. D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732–2743.CrossRefGoogle Scholar
  20. [20]
    Li, L. K.; Yang, F. Y.; Ye, G. J.; Zhang, Z. C.; Zhu, Z. W.; Lou, W. K.; Zhou, X. Y.; Li, L.; Watanabe, K.; Taniguchi, T. et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 2016, 11, 593–597.CrossRefGoogle Scholar
  21. [21]
    Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319.CrossRefGoogle Scholar
  22. [22]
    Li, L. K.; Kim, J.; Jin, C. H.; Ye, G. J.; Qiu, D. Y.; da Jornada, F. H.; Shi, Z. W.; Chen, L.; Zhang, Z. C.; Yang, F. Y. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 2017, 12, 21–25.CrossRefGoogle Scholar
  23. [23]
    Brown, A.; Rundqvist, S. Refinement of the crystal structure of black phosphorus. Acta Crystallogr. 1965, 19, 684–685.CrossRefGoogle Scholar
  24. [24]
    Hultgren, R.; Gingrich, N. S.; Warren, B. E. The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 1935, 3, 351–355.CrossRefGoogle Scholar
  25. [25]
    Zhang, C. D.; Lian, J. C.; Yi, W.; Jiang, Y. H.; Liu, L. W.; Hu, H.; Xiao, W. D.; Du, S. X.; Sun, L. L.; Gao, H. J. Surface structures of black phosphorus investigated with scanning tunneling microscopy. J. Phys. Chem. C 2009, 113, 18823–18826.CrossRefGoogle Scholar
  26. [26]
    Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 2015, 10, 707–713.CrossRefGoogle Scholar
  27. [27]
    Huang, M. Q.; Wang, M. L.; Chen, C.; Ma, Z. W.; Li, X. F.; Han, J. B.; Wu, Y. Q. Broadband black-phosphorus photodetectors with high responsivity. Adv. Mater. 2016, 28, 3481–3485.CrossRefGoogle Scholar
  28. [28]
    Han, C.; Hu, Z. H.; Carvalho, A.; Guo, N.; Zhang, J. L.; Hu, F.; Xiang, D.; Wu, J.; Lei, B.; Wang, L. et al. Oxygen induced strong mobility modulation in few-layer black phosphorus. 2D Mater. 2017, 4, 021007.CrossRefGoogle Scholar
  29. [29]
    Du, Y. C.; Liu, H.; Deng, Y. X.; Ye, P. D. Device perspective for black phosphorus field-effect transistors: Contact resistance, ambipolar behavior, and scaling. ACS Nano 2014, 8, 10035–10042.CrossRefGoogle Scholar
  30. [30]
    Perello, D. J.; Chae, S. H.; Song, S.; Lee, Y. H. High-performance n-type black phosphorus transistors with type control via thickness and contactmetal engineering. Nat. Commun. 2015, 6, 7809.CrossRefGoogle Scholar
  31. [31]
    Das, S.; Demarteau, M.; Roelofs, A. Ambipolar phosphorene field effect transistor. ACS Nano 2014, 8, 11730–11738.CrossRefGoogle Scholar
  32. [32]
    Zhang, J. L.; Han, C.; Hu, Z. H.; Wang, L.; Liu, L.; Wee, A. T. S.; Chen, W. 2D phosphorene: Epitaxial growth and interface engineering for electronic devices. Adv. Mater., in press, DOI: 10.1002/adma.201802207.Google Scholar
  33. [33]
    Kim, J.; Baik, S. S.; Ryu, S. H.; Sohn, Y.; Park, S.; Park, B. G.; Denlinger, J.; Yi, Y.; Choi, H. J.; Kim, K. S. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 2015, 349, 723–726.CrossRefGoogle Scholar
  34. [34]
    Han, C.; Hu, Z. H.; Gomes, L. C.; Bao, Y.; Carvalho, A.; Tan, S. J. R.; Lei, B.; Xiang, D.; Wu, J.; Qi, D. Y. et al. Surface functionalization of black phosphorus via potassium toward high-performance complementary devices. Nano Lett. 2017, 17, 4122–4129.CrossRefGoogle Scholar
  35. [35]
    Xiang, D.; Han, C.; Wu, J.; Zhong, S.; Liu, Y. Y.; Lin, J. D.; Zhang, X.-A.; Hu, W. P.; Özyilmaz, B.; Neto, A. C. et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 2015, 6, 6485.CrossRefGoogle Scholar
  36. [36]
    Wu, J.; Koon, G. K. W.; Xiang, D.; Han, C.; Toh, C. T.; Kulkarni, E. S.; Verzhbitskiy, I.; Carvalho, A.; Rodin, A. S.; Koenig, S. P. et al. Colossal ultraviolet photoresponsivity of few-layer black phosphorus. ACS Nano 2015, 9, 8070–8077.CrossRefGoogle Scholar
  37. [37]
    Ryder, C. R.; Wood, J. D.; Wells, S. A.; Yang, Y.; Jariwala, D.; Marks, T. J.; Schatz, T. J.; Hersam, M. C. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 2016, 8, 597–602.CrossRefGoogle Scholar
  38. [38]
    Abellán, G.; Lloret, V.; Mundloch, U.; Marcia, M.; Neiss, C.; Görling, A.; Varela, M.; Hauke, F.; Hirsch, A. Noncovalent functionalization of black phosphorus. Angew. Chem. 2016, 128, 14777–14782.CrossRefGoogle Scholar
  39. [39]
    Liu, Y. D.; Cai, Y. Q.; Zhang, G.; Zhang, Y. W.; Ang, K. W. Al-doped black phosphorus p–n homojunction diode for high performance photovoltaic. Adv. Funct. Mater. 2017, 27, 1604638.CrossRefGoogle Scholar
  40. [40]
    Prakash, A.; Cai, Y. Q.; Zhang, G.; Zhang, Y. W.; Ang, K. W. Black phosphorus N-type field-effect transistor with ultrahigh electron mobility via aluminum adatoms doping. Small 2017, 13, 1602909.CrossRefGoogle Scholar
  41. [41]
    Liu, Y. D.; Ang, K. W. Monolithically integrated flexible black phosphorus complementary inverter circuits. ACS Nano 2017, 11, 7416–7423.CrossRefGoogle Scholar
  42. [42]
    Sugai, S.; Shirotani, I. Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun. 1985, 53, 753–755.CrossRefGoogle Scholar
  43. [43]
    Hu, Z. H.; Li, Q.; Lei, B.; Zhou, Q. H.; Xiang, D.; Lyu, Z.; Hu, F.; Wang, J. Y.; Ren, Y. J.; Guo, R. et al. Water-catalyzed oxidation of few-layer black phosphorous in a dark environment. Angew. Chem. 2017, 56, 9131–9135.CrossRefGoogle Scholar
  44. [44]
    Hu, T.; Hong, J. S. First-principles study of metal adatom adsorption on black phosphorene. J. Phys. Chem. C 2015, 119, 8199–8207.CrossRefGoogle Scholar
  45. [45]
    Zhu, H.; McDonnell, S.; Qin, X. Y.; Azcatl, A.; Cheng, L. X.; Addou, R.; Kim, J.; Ye, P. D.; Wallace, R. M. Al2O3 on black phosphorus by atomic layer deposition: An in situ interface study. ACS Appl. Mater. Inter 2015, 7, 13038–13043.CrossRefGoogle Scholar
  46. [46]
    Engel, M.; Steiner, M.; Avouris, P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 2014, 14, 6414–6417.CrossRefGoogle Scholar
  47. [47]
    Youngblood, N.; Chen, C.; Koester, S. J.; Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 2015, 9, 247–252.CrossRefGoogle Scholar
  48. [48]
    Guo, Q. S.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B. C.; Li, C.; Han, S.-J.; Wang, H. et al. Black phosphorus midinfrared photodetectors with high gain. Nano Lett. 2016, 16, 4648–4655.CrossRefGoogle Scholar
  49. [49]
    Hu, Z. H.; Li, Q.; Lei, B.; Wu, J.; Zhou, Q. H.; Gu, C. D.; Wen, X. L.; Wang, J. Y.; Liu, Y. P.; Li, S. S. et al. Abnormal near-infrared absorption in 2D black phosphorus induced by Ag nanoclusters surface functionalization. Adv. Mater. 2018, 30, 1801931.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yue Zheng
    • 1
    • 2
  • Zehua Hu
    • 2
  • Cheng Han
    • 3
  • Rui Guo
    • 4
  • Du Xiang
    • 2
    • 4
  • Bo Lei
    • 2
  • Yanan Wang
    • 2
  • Jun He
    • 5
  • Min Lai
    • 1
  • Wei Chen
    • 2
    • 4
    • 6
    Email author
  1. 1.School of Physics and Optoelectronic EngineeringNanjing University of Information Science & TechnologyNanjingChina
  2. 2.Department of PhysicsNational University of SingaporeSingaporeSingapore
  3. 3.SZU-NUS Collaborative Innovation Center for Optoelectronic Science and TechnologyShenzhen UniversityShenzhenChina
  4. 4.Department of ChemistryNational University of SingaporeSingaporeSingapore
  5. 5.School of Physics and ElectronicsCentral South UniversityChangshaChina
  6. 6.National University of Singapore (Suzhou) Research InstituteSuzhouChina

Personalised recommendations