Well-defined carbon nanoframes containing bimetal-N-C active sites as efficient bi-functional electrocatalysts for Li-O2 batteries

  • Tie Liu
  • Leidanyang Wang
  • Tao Huang
  • Aishui Yu
Research Article


Design and fabrication of framework-structured porous precursors have been regarded as a prospective albeit challenging strategy to obtain bimetal/NC-enriched bifunctional elecrocatalysts. In this work, an effective bottom-up approach involving solution-based self-assembly and a post-annealing process was developed to confine (Co, Zn)-N-C active sites into N-enriched graphitic carbon nanocages. This novel architecture containing N-doped-C stabilized bimetallic nanoparticles derived from ZIF precursors was well-studied by a series of characterization and analysis techniques. Details were given that these well-dispersed (Co, Zn) nanoparticles were encapsulated into the pyridinic-N-dominated graphitic carbon nanocage with a total metal loading of approximately 7.4 at.%. This favorable hierarchical structure not only enhances the electron conductivity, but also owns a sufficient BET surface area facilitating the gas-liquid-solid triphase reaction and producing more space to store discharge products. Importantly, results infer that the interesting nanoframes manifests a satisfying ORR/OER activity and enhanced cell performance whether liquid or solid-state electrolytes are used. As such, our work rationalizes that this type of cage-shaped bimetal-N-C material is promising for high-performance Li-O2 batteries.


bifunctional electrocatalyst Li-oxygen battery nitrogen-doped carbon zinc-cobalt 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author thanks the financial supports from the National Basic Research Program of China (No. 2014CB932301), the National Natural Science Foundation of China (No. 21473040) and Science & Technology Commission of Shanghai Municipality, China (No. 08DZ2270500).

Supplementary material

12274_2018_2244_MOESM1_ESM.pdf (3.9 mb)
Well-defined carbon nanoframes containing bimetal-N-C active sites as efficient bi-functional electrocatalysts for Li-O2 batteries


  1. [1]
    Zhao, C. T.; Yu, C.; Liu, S. H.; Yang, J.; Fan, X. M.; Huang, H. W.; Qiu, J. S. 3D porous N-doped graphene frameworks made of interconnected nanocages for ultrahigh-rate and long-life Li-O2 batteries. Adv. Funct. Mater. 2015, 25, 6913–6920.CrossRefGoogle Scholar
  2. [2]
    Yoon, K. R.; Shin, K.; Park, J.; Cho, S. H.; Kim, C.; Jung, J. W.; Cheong, J. Y.; Byon, H. R.; Lee, H. M.; Kim, I. D. Brush-like cobalt nitride anchored carbon nanofiber membrane: Current collector-catalyst integrated cathode for long cycle Li-O2 batteries. ACS Nano 2018, 12, 128–139.CrossRefGoogle Scholar
  3. [3]
    Zhang, J.; Luan, Y. P.; Lyu, Z. Y.; Wang, L. J.; Xu, L. L.; Yuan, K. D.; Pan, F.; Lai, M.; Liu, Z. L.; Chen, W. Synthesis of hierarchical porous d-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries. Nanoscale 2015, 7, 14881–14888.CrossRefGoogle Scholar
  4. [4]
    Yoon, K. R.; Lee, G. Y.; Jung, J. W.; Kim, N. H.; Kim, S. O.; Kim, I. D. One-dimensional RuO2/Mn2O3 hollow architectures as efficient bifunctional catalysts for lithium-oxygen batteries. Nano Lett. 2016, 16, 2076–2083.CrossRefGoogle Scholar
  5. [5]
    Liu, T.; Zhang, X. H.; Huang, T.; Yu, A. S. Pyridinic-N-dominated carbon frameworks with porous tungsten trioxide nano-lamellae as a promising bi-functional catalyst for Li-oxygen batteries. Nanoscale 2018, 10, 15763–15770.CrossRefGoogle Scholar
  6. [6]
    Feng, N. N.; He, P.; Zhou H. S. Critical challenges in rechargeable aprotic Li-O2 batteries. Adv. Energy Mater. 2016, 6, 1502303.CrossRefGoogle Scholar
  7. [7]
    Luo, W. B.; Gao, X. W.; Chou, S. L.; Wang, J. Z.; Liu, H. K. Porous AgPd-Pd composite nanotubes as highly efficient electrocatalysts for lithium-oxygen batteries. Adv. Mater. 2015, 27, 6862–6869.CrossRefGoogle Scholar
  8. [8]
    Yuan, M. W.; Yang, Y.; Nan, C. Y.; Sun, G. B.; Li, H. F.; Ma, S. L. Porous Co3O4 nanorods anchored on graphene nanosheets as an effective electrocatalysts for aprotic Li-O2 batteries. Appl. Surf. Sci. 2018, 444, 312–319.CrossRefGoogle Scholar
  9. [9]
    Ren, Y. B.; Zhang, S. C.; Li, H. L.; Wei, X.; Xing, Y. L. Mesoporous Pd/Co3O4 nanosheets nanoarrays as an efficient binder/carbon free cathode for rechargeable Li-O2 batteries. Appl. Surf. Sci. 2017, 420, 222–232.CrossRefGoogle Scholar
  10. [10]
    Sun, W.; Wang, Y.; Wu, H. T.; Wang, Z. H.; Rooney, D.; Sun, K. N. 3D free-standing hierarchical CuCo2O4 nanowire cathodes for rechargeable lithium–oxygen batteries. Chem. Commun. 2017, 53, 8711–8714.CrossRefGoogle Scholar
  11. [11]
    Zhu, Y. Q.; Cao, T.; Cao, C. B.; Luo, J.; Chen, W. X.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Han, Y. H.; Li, Z. et al. One-pot pyrolysis to N-doped graphene with high-density Pt single atomic sites as heterogeneous catalyst for alkene hydrosilylation. ACS Catal. 2018, 8, 10004–10011.CrossRefGoogle Scholar
  12. [12]
    Jian, Z. L.; Liu, P.; Li, F. J.; He, P.; Guo, X. W.; Chen, M. W.; Zhou, H. S. Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew. Chem., Int. Ed. 2014, 53, 442–446.CrossRefGoogle Scholar
  13. [13]
    Thomas, M.; Illathvalappil, R.; Kurungot, S.; Nair, B. N.; Mohamed, A. A. P.; Anilkumar, G. M.; Yamaguchi, T.; Hareesh, U. S. Graphene oxide sheathed ZIF-8 microcrystals: Engineered precursors of nitrogen-doped porous carbon for efficient oxygen reduction reaction (ORR) electrocatalysis. ACS Appl. Mater. Interfaces 2016, 8, 29373–29382.CrossRefGoogle Scholar
  14. [14]
    Wang, X. B.; Liu, J.; Leong, S.; Lin, X. C.; Wei, J.; Kong, B.; Xu, Y. F.; Low, Z. X.; Yao, J. F.; Wang, H. T. Rapid construction of ZnO@ZIF-8 heterostructures with size-selective photocatalysis properties. ACS Appl. Mater. Interfaces 2016, 8, 9080–9087.CrossRefGoogle Scholar
  15. [15]
    Wu, N.; Lei, Y. P.; Wang, Q. C.; Wang, B.; Han, C.; Wang, Y. D. Facile synthesis of FeCo@NC core–shell nanospheres supported on graphene as an efficient bifunctional oxygen electrocatalyst. Nano Res. 2017, 10, 2332–2343.CrossRefGoogle Scholar
  16. [16]
    Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663.CrossRefGoogle Scholar
  17. [17]
    Du, N. N.; Wang, C. M.; Long, R.; Xiong, Y. J. N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: Highly active and durable catalysts for oxygen reduction reaction. Nano Res. 2017, 10, 3228–3237.CrossRefGoogle Scholar
  18. [18]
    Lu, S. Q.; Zhuang, Z. B. Electrocatalysts for hydrogen oxidation and evolution reactions. Sci. China Mater. 2016, 59, 217–238.CrossRefGoogle Scholar
  19. [19]
    Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.CrossRefGoogle Scholar
  20. [20]
    Kim, S. H.; Lee, Y. J.; Kim, D. H.; Lee, Y. J. Bimetallic metal-organic frameworks as efficient cathode catalysts for Li-O2 batteries. ACS Appl. Mater. Interfaces 2018, 10, 660–667.CrossRefGoogle Scholar
  21. [21]
    Guo, M. X.; Gao, T.; Ma, H.; Li, H. B. Weaving ZIF-67 by employing carbon nanotubes to constitute hybrid anode for lithium ions battery. Mater. Lett. 2018, 212, 143–146.CrossRefGoogle Scholar
  22. [22]
    Yu, Z.; Bai, Y.; Zhang, S. M.; Liu, Y. X.; Zhang, N. Q.; Wang, G. H.; Wei, J. H.; Wu, Q. B.; Sun, K. N. Metal-organic framework-derived Co3ZnC/Co embedded in nitrogen-doped carbon nanotube-grafted carbon polyhedra as a high-performance electrocatalyst for water splitting. ACS Appl. Mater. Interfaces 2018, 10, 6245–6252.CrossRefGoogle Scholar
  23. [23]
    Zhu, Y. Q.; Cao, T.; Cao, C. B.; Ma, X. L.; Xu, X. Y.; Li, Y. D. A general synthetic strategy to monolayer graphene. Nano Res. 2018, 11, 3088–3095.CrossRefGoogle Scholar
  24. [24]
    Han, A. J.; Chen, W. X.; Zhang, S. L.; Zhang, M. L.; Han, Y. H.; Zhang, J.; Ji, S. F.; Zheng, L. R.; Wang, Y.; Gu, L. et al. A polymer encapsulation strategy to synthesize porous nitrogen-doped carbon-nanosphere-supported metal isolated-single-atomic-site catalysts. Adv. Mater. 2018, 30, 1706508.CrossRefGoogle Scholar
  25. [25]
    Zhu, Y. Q.; Sun, W. M.; Chen, W. X.; Cao, T.; Xiong, Y.; Luo, J.; Dong, J. C.; Zheng, L. R.; Zhang, J.; Wang, X. L. et al. Scale-up biomass pathway to cobalt single-site catalysts anchored on N-doped porous carbon nanobelt with ultrahigh surface area. Adv. Funct. Mater. 2018, 28, 1802167.CrossRefGoogle Scholar
  26. [26]
    Zhu, Y. Q.; Sun, W. M.; Luo, J.; Chen, W. X.; Cao, T.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Zhang, M. L.; Han, Y. H. et al. A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nat. Commun. 2018, 9, 3861.CrossRefGoogle Scholar
  27. [27]
    Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, 61, 1527–1535.CrossRefGoogle Scholar
  28. [28]
    Zhu, Y. Q.; Cao, C. B.; Zhang, J. T.; Xu, X. Y. Two-dimensional ultrathin ZnCo2O4 nanosheets: General formation and lithium storage application. J. Mater. Chem. A 2015, 3, 9556–9564.CrossRefGoogle Scholar
  29. [29]
    Zhang, C. L.; Wang, B. W.; Shen, X. C.; Liu, J. W.; Kong, X. K.; Chuang, S. S. C.; Yang, D.; Dong, A. G.; Peng, Z. N. A nitrogen-doped ordered mesoporous carbon/graphene framework as bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nano Energy 2016, 30, 503–510.CrossRefGoogle Scholar
  30. [30]
    Jian, Z. L.; Hu, Y. S.; Ji, X. L.; Chen, W. NASICON-structured materials for energy storage. Adv. Mater. 2017, 29, 1601925.CrossRefGoogle Scholar
  31. [31]
    Weiss, M.; Weber, D. A.; Senyshyn, A.; Janek, J.; Zeier, W. G. Correlating transport and structural properties in Li1+xAlxGe2-x(PO4)3 (LAGP) prepared from aqueous solution. ACS Appl. Mater. Interfaces 2018, 10, 10935–10944.CrossRefGoogle Scholar
  32. [32]
    Zhai, D. Y.; Wang, H. H.; Yang, J. B.; Lau, K. C.; Li, K. X.; Amine, K.; Curtiss, L. A. Disproportionation in Li-O2 batteries based on a large surface area carbon cathode. J. Am. Chem. Soc. 2013, 135, 15364–15372.CrossRefGoogle Scholar
  33. [33]
    Leng, L. M.; Li, J.; Zeng, X. Y.; Tian, X. L.; Song, H. Y.; Cui, Z. M.; Shu, T.; Wang, H. S.; Ren, J. W.; Liao, S. J. Enhanced cyclability of Li-O2 batteries with cathodes of Ir and MnO2 supported on well-defined TiN arrays. Nanoscale 2018, 10, 2983–2989.CrossRefGoogle Scholar
  34. [34]
    Zhang, P.; Zhang, S. F.; He, M.; Lang, J. W.; Ren, A. M.; Xu, S.; Yan, X. B. Realizing the embedded growth of large Li2O2 aggregations by matching different metal oxides for high-capacity and high-rate lithium oxygen batteries. Adv. Sci., 2017, 4, 1700172.CrossRefGoogle Scholar
  35. [35]
    Black, R.; Lee, J. H.; Adams, B.; Mims, C. A.; Nazar, L. F. The role of catalysts and peroxide oxidation in lithium-oxygen batteries. Angew. Chem., Int. Ed. 2013, 52, 392–396.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tie Liu
    • 1
  • Leidanyang Wang
    • 2
  • Tao Huang
    • 2
  • Aishui Yu
    • 1
  1. 1.Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Institute of New EnergyFudan UniversityShanghaiChina
  2. 2.Laboratory of Advanced MaterialsFudan UniversityShanghaiChina

Personalised recommendations