Advertisement

Nano Research

, Volume 12, Issue 2, pp 463–468 | Cite as

Tunable Schottky barrier width and enormously enhanced photoresponsivity in Sb doped SnS2 monolayer

  • Junchi Liu
  • Xiao Liu
  • Zhuojun Chen
  • Lili Miao
  • Xingqiang Liu
  • Bo LiEmail author
  • Liming Tang
  • Keqiu Chen
  • Yuan Liu
  • Jingbo Li
  • Zhongming WeiEmail author
  • Xidong DuanEmail author
Research Article
  • 92 Downloads

Abstract

Doping, which is the intentional introduction of impurities into a material, can improve the metal-semiconductor interface by reducing Schottky barrier width. Here, we present high-quality two-dimensional SnS2 nanosheets with well-controlled Sb doping concentration via direct vapor growth approach and following micromechanical cleavage process. X-ray photoelectron spectroscopy (XPS) measurement demonstrates that Sb contents of the doped samples are approximately 0.22%, 0.34% and 1.21%, respectively, and doping induces the upward shift of the Fermi level with respect to the pristine SnS2. Transmission electron microscopy (TEM) characterization exhibits that Sb-doped SnS2 nanosheets have a high-quality hexagonal symmetry structure and Sb element is uniformly distributed in the nanosheets. The phototransistors based on the Sb-doped SnS2 monolayers show n-type behavior with high mobility which is one order of magnitude higher than that of pristine SnS2 phototransistors. The photoresponsivity and external quantum efficiency (EQE) of Sb-SnS2 monolayers phototransistors are approximately three orders of magnitude higher than that of pristine SnS2 phototransistor. The results suggest that the method of reducing Shottky barrier width to achieve high mobility and photoresponsivity is effective, and Sb-doped SnS2 monolayer has significant potential in future nanoelectronic and optoelectronic applications.

Keywords

two-dimensional doping Schottky barrier width SnS2 optoelectronics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We acknowledge support from the National Natural Science Foundation of China (Nos. 61804050, 51872086, 61622406, 11674310, and 61571415), the Double First-Class Initiative of Hunan University (No. 531109100004), and the Fundamental Research Funds of the Central Universities (Nos. 531107051078 and 531107051055).

References

  1. [1]
    Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788–792.CrossRefGoogle Scholar
  2. [2]
    Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Cheng, R. et al. Monolayer atomic crystal molecular superlattices. Nature 2018, 555, 231–236.CrossRefGoogle Scholar
  3. [3]
    Cui, Y.; Li, B.; Li, J. B.; Wei, Z. M. Chemical vapor deposition growth of two-dimensional heterojunctions. Sci. China Phys. Mech. Astron. 2018, 61, 016801.CrossRefGoogle Scholar
  4. [4]
    Li, Q. Z.; Tang, L. P.; Zhang, C. X.; Wang, D.; Chen, Q. J.; Feng, Y. X.; Tang, L. M.; Chen, K. Q. Seeking the Dirac cones in the MoS2/WSe2 van der Waals heterostructure. Appl. Phys. Lett. 2017, 111, 171602.CrossRefGoogle Scholar
  5. [5]
    Chen, P.; Zhang, Z. W.; Duan, X. D.; Duan, X. F. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 2018, 47, 3129–3151.CrossRefGoogle Scholar
  6. [6]
    Ning, F.; Wang, D.; Feng, Y. X.; Tang, L. M.; Zhang, Y.; Chen, K. Q. Strong interfacial interaction and enhanced optical absorption in graphene/InAs and MoS2/InAs heterostructures. J. Mater. Chem. C 2017, 5, 9429–9438.CrossRefGoogle Scholar
  7. [7]
    Huo, N. J.; Yang, Y. J.; Li, J. B. Optoelectronics based on 2D TMDs and heterostructures. J. Semicond. 2017, 38, 031002.CrossRefGoogle Scholar
  8. [8]
    Wang, J.; Xie, F.; Cao, X. H.; An, S. C.; Zhou, W. X.; Tang, L. M.; Chen, K. Q. Excellent thermoelectric properties in monolayer WSe2 nanoribbons due to ultralow phonon thermal conductivity. Sci. Rep. 2017, 7, 41418.CrossRefGoogle Scholar
  9. [9]
    Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of twodimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024–1030.CrossRefGoogle Scholar
  10. [10]
    Yang, H. H.; Gao, F.; Dai, M. J.; Jia, D. C.; Zhou, Y.; Hu, P. A. Recent advances in preparation, properties and device applications of two-dimensional h-BN and its vertical heterostructures. J. Semicond. 2017, 38, 031004.CrossRefGoogle Scholar
  11. [11]
    Xue, X. X.; Feng, Y. X.; Liao, L.; Chen, Q. J.; Wang, D.; Tang, L. M.; Chen, K. Q. Strain tuning of electronic properties of various dimension elemental tellurium with broken screw symmetry. J. Phys. Condens. Mat. 2018, 30, 125001.CrossRefGoogle Scholar
  12. [12]
    Li, B.; Huang, L.; Zhao, G. Y.; Wei, Z. M.; Dong, H. L.; Hu, W. P.; Wang, L. W.; Li, J. B. Large-size 2D β-Cu2S nanosheets with giant phase transition temperature lowering (120 K) synthesized by a novel method of supercooling chemical-vapor-deposition. Adv. Mater. 2016, 28, 8271–8276.CrossRefGoogle Scholar
  13. [13]
    Wei, Z. M.; Li, B.; Xia, C. X.; Cui, Y.; He, J.; Xia, J. B.; Li, J. B. Various structures of 2D transition-metal dichalcogenides and their applications. Small Methods 2018, 2, 1800094.CrossRefGoogle Scholar
  14. [14]
    Duan, X. D.; Wang, C.; Fan, Z.; Hao, G. L.; Kou, L. Z.; Halim, U.; Li, H. L.; Wu, X. P.; Wang, Y. C.; Jiang, J. H. et al. Synthesis of WS2xSe2–2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 2016, 16, 264–269.CrossRefGoogle Scholar
  15. [15]
    Zou, J.; Tang, L. M.; Chen, K. Q; Feng, Y. X. Contrasting properties of hydrogenated and protonated single-layer h-BN from first-principles. J. Phys. Condens. Mat. 2018, 30, 065001.CrossRefGoogle Scholar
  16. [16]
    Xie, G. F.; Ju, Z. F.; Zhou, K. K.; Wei, X. L.; Guo, Z. X.; Cai, Y. Q.; Zhang, G. Ultra-low thermal conductivity of two-dimensional phononic crystals in the incoherent regime. npj Comput. Mater. 2018, 4, 21.Google Scholar
  17. [17]
    Li, B.; Huang, L.; Zhong, M. Z.; Li, Y.; Wang, Y.; Li, J. B.; Wei, Z. M. Direct vapor phase growth and optoelectronic application of large band offset SnS2/MoS2 vertical bilayer heterostructures with high lattice mismatch. Adv. Electron. Mater. 2016, 2, 1600298.CrossRefGoogle Scholar
  18. [18]
    Xie, G. F.; Ding, D.; Zhang, G. Phonon coherence and its effect on thermal conductivity of nanostructures. Adv. Phys. X 2018, 3, 1480417.Google Scholar
  19. [19]
    Hu, Z. H.; Wu, Z. T.; Han, C.; He, J.; Ni, Z. H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128.CrossRefGoogle Scholar
  20. [20]
    Xiang, D.; Liu, T.; Xu, J. L.; Tan, J. Y.; Hu, Z. H.; Lei, B.; Zheng, Y.; Wu, J.; Neto, A. H. C.; Liu, L. et al. Two-dimensional multibit optoelectronic memory with broadband spectrum distinction. Nat. Commun. 2018, 9, 2966.CrossRefGoogle Scholar
  21. [21]
    Zhong, M. Z.; Wei, Z. M.; Meng, X. Q.; Wu, F. M.; Li, J. B. Highperformance single crystalline UV photodetectors of β-Ga2O3. J. Alloys Compd. 2015, 619, 572–575.CrossRefGoogle Scholar
  22. [22]
    Liu, F. J.; Wang, J. W.; Wang, L.; Cai, X. Y.; Jiang, C.; Wang, G. T. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor. J. Semicond. 2017, 38, 034002.CrossRefGoogle Scholar
  23. [23]
    Liu, J. C.; Zhong, M. Z.; Liu, X.; Sun, G. Z.; Chen, P.; Zhang, Z. W.; Li, J.; Ma, H. F.; Zhao, B.; Wu, R. X. Two-dimensional plumbum-doped tin diselenide monolayer transistor with high on/off ratio. Nanotechnology 2018, 29, 474002.CrossRefGoogle Scholar
  24. [24]
    Tung, R. T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 2014, 1, 011304.CrossRefGoogle Scholar
  25. [25]
    Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 2018, 557, 696–700.CrossRefGoogle Scholar
  26. [26]
    Yang, L. M.; Majumdar, K.; Liu, H.; Du, Y. C.; Wu, H.; Hatzistergos, M.; Hung, P. Y.; Tieckelmann, R.; Tsai, W.; Hobbs, C. et al. Chloride molecular doping technique on 2D Materials: WS2 and MoS2. Nano Lett. 2014, 14, 6275–6280.CrossRefGoogle Scholar
  27. [27]
    Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13, 1983–1990.CrossRefGoogle Scholar
  28. [28]
    Kang, J. H.; Liu, W.; Banerjee, K. High-performance MoS2 transistors with low-resistance molybdenum contacts. Appl. Phys. Lett. 2014, 104, 093106.CrossRefGoogle Scholar
  29. [29]
    Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.CrossRefGoogle Scholar
  30. [30]
    Liu, Y.; Wu, H.; Cheng, H. C.; Yang, S.; Zhu, E. B.; He, Q. Y.; Ding, M. N.; Li, D. H.; Guo, J.; Weiss, N. O. et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 2015, 15, 3030–3034.CrossRefGoogle Scholar
  31. [31]
    Liu, Y.; Zhou, H. L.; Weiss, N. O.; Huang, Y.; Duan, X. F. High-performance organic vertical thin film transistor using graphene as a tunable contact. ACS Nano 2015, 9, 11102–11108.CrossRefGoogle Scholar
  32. [32]
    Cui, X.; Lee, G. H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C. H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 2015, 10, 534–540.CrossRefGoogle Scholar
  33. [33]
    Wang, J. L.; Yao, Q.; Huang, C. W.; Zou, X. M.; Liao, L.; Chen, S. S.; Fan, Z. Y.; Zhang, K.; Wu, W.; Xiao, X. H. et al. High mobility MoS2 transistor with low schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 2016, 28, 8302–8308.CrossRefGoogle Scholar
  34. [34]
    Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.CrossRefGoogle Scholar
  35. [35]
    Huang, Y.; Sutter, E.; Sadowski, J. T.; Cotlet, M.; Monti, O. L. A.; Racke, D. A.; Neupane, M. R.; Wickramaratne, D.; Lake, R. K.; Parkinson, B. A. et al. Tin disulfide—An emerging layered metal dichalcogenide semiconductor: Materials properties and device characteristics. ACS Nano 2014, 8, 10743–10755.CrossRefGoogle Scholar
  36. [36]
    Su, G. X.; Hadjiev, V. G.; Loya, P. E.; Zhang, J.; Lei, S. D.; Maharjan, S.; Dong, P.; Ajayan, P. M.; Lou, J.; Peng, H. B. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett. 2015, 15, 506–513.CrossRefGoogle Scholar
  37. [37]
    Huang, Y.; Deng, H. X.; Xu, K.; Wang, Z. X.; Wang, Q. S.; Wang, F. M.; Wang, F.; Zhan, X. Y.; Li, S. S.; Luo, J. W. et al. Highly sensitive and fast phototransistor based on large size CVD-grown SnS2 nanosheets. Nanoscale 2015, 7, 14093–14099.CrossRefGoogle Scholar
  38. [38]
    Zhou, X.; Hu, X. Z.; Zhou, S. S.; Song, H. Y.; Zhang, Q.; Pi, L. J.; Li, L.; Li, H. Q.; Lü, J. T.; Zhai, T. Y. Tunneling diode based on WSe2/SnS2 heterostructure incorporating high detectivity and responsivity. Adv. Mater. 2018, 30, 1703286.CrossRefGoogle Scholar
  39. [39]
    Zhou, X.; Zhang, Q.; Gan, L.; Li, H. Q.; Zhai, T. Y. Large-size growth of ultrathin SnS2 nanosheets and high performance for phototransistors. Adv. Funct. Mater. 2016, 26, 4405–4413.CrossRefGoogle Scholar
  40. [40]
    Wang, Y.; Huang, L.; Li, B.; Shang, J. M.; Xia, C. X.; Fan, C.; Deng, H. X.; Wei, Z. M.; Li, J. B. Composition-tunable 2D SnSe2(1−x)S2x alloys towards efficient bandgap engineering and high performance (opto)electronics. J. Mater. Chem. C 2017, 5, 84–90.CrossRefGoogle Scholar
  41. [41]
    Wang, Y.; Huang, L.; Wei, Z. M. Photoresponsive field-effect transistors based on multilayer SnS2 nanosheets. J. Semicond. 2017, 38, 034001.CrossRefGoogle Scholar
  42. [42]
    Zhang, M.; Wu, J. X.; Zhu, Y. M.; Dumcenco, D. O.; Hong, J. H.; Mao, N. N.; Deng, S. B.; Chen, Y. F.; Yang, Y. L.; Jin, C. H. et al. Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, Raman scattering, and electrical transport. ACS Nano 2014, 8, 7130–7137.CrossRefGoogle Scholar
  43. [43]
    Chen, Y. F.; Dumcenco, D. O.; Zhu, Y. M.; Zhang, X.; Mao, N. N.; Feng, Q. L.; Zhang, M.; Zhang, J.; Tan, P. H.; Huang, Y. S. et al. Composition-dependent Raman modes of Mo1–xWxS2 monolayer alloys. Nanoscale 2014, 6, 2833–2839.CrossRefGoogle Scholar
  44. [44]
    Feng, Q. L.; Zhu, Y. M.; Hong, J. H.; Zhang, M.; Duan, W. J.; Mao, N. N.; Wu, J. X.; Xu, H.; Dong, F. L.; Lin, F. et al. Growth of large-area 2D MoS2(1–x)Se2x semiconductor alloys. Adv. Mater. 2014, 26, 2648–2653.CrossRefGoogle Scholar
  45. [45]
    Li, B.; Huang, L.; Zhong, M. Z.; Huo, N. J.; Li, Y. T.; Yang, S. X.; Fan, C.; Yang, J. H.; Hu, W. P.; Wei, Z. M. et al. Synthesis and transport properties of large-scale alloy Co0.16Mo0.84S2 bilayer nanosheets. ACS Nano 2015, 9, 1257–1262.CrossRefGoogle Scholar
  46. [46]
    Huang, C.; Jin, Y. B.; Wang, W. Y.; Tang, L.; Song, C. Y.; Xiu, F. X. Manganese and chromium doping in atomically thin MoS2. J. Semicond. 2017, 38, 033004.CrossRefGoogle Scholar
  47. [47]
    Li, B.; Xing, T.; Zhong, M. Z.; Huang, L.; Lei, N.; Zhang, J.; Li, J. B.; Wei, Z. M. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat. Commun. 2017, 8, 1958.CrossRefGoogle Scholar
  48. [48]
    Suh, J.; Park, T. E.; Lin, D. Y.; Fu, D. Y.; Park, J.; Jung, H. J.; Chen, Y. B.; Ko, C.; Jang, C.; Sun, Y. H. et al. Doping against the native propensity of MoS2: Degenerate hole doping by cation substitution. Nano Lett. 2014, 14, 6976–6982.CrossRefGoogle Scholar
  49. [49]
    Han, Q. F.; Chen, L.; Zhu, W. C.; Wang, M. J.; Wang, X.; Yang, X. J.; Lu, L. D. Synthesis of Sb2S3 peanut-shaped superstructures. Mater. Lett. 2009, 63, 1030–1032.CrossRefGoogle Scholar
  50. [50]
    Zakaznova-Herzog, V. P.; Harmer, S. L.; Nesbitt, H. W.; Bancroft, G. M.; Flemming, R.; Pratt, A. R. High resolution XPS study of the large-bandgap semiconductor stibnite (Sb2S3): Structural contributions and surface reconstruction. Surf. Sci. 2006, 600, 348–356.CrossRefGoogle Scholar
  51. [51]
    Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices, 3rd ed.; Wiley-Interscience: New York, 2006; p 137.CrossRefGoogle Scholar
  52. [52]
    Huo, N. J.; Yang, S. X.; Wei, Z. M.; Li, S. S.; Xia, J. B.; Li, J. B. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep. 2014, 4, 5209.CrossRefGoogle Scholar
  53. [53]
    Kim, J. H.; Lee, J.; Kim, J. H.; Hwang, C. C.; Lee, C.; Park, J. Y. Work function variation of MoS2 atomic layers grown with chemical vapor deposition: The effects of thickness and the adsorption of water/oxygen molecules. Appl. Phys. Lett. 2015, 106, 251606.CrossRefGoogle Scholar
  54. [54]
    Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622.CrossRefGoogle Scholar
  55. [55]
    Cho, K.; Park, W.; Park, J.; Jeong, H.; Jang, J.; Kim, T. Y.; Hong, W. K.; Hong, S.; Lee, T. Electric stress-induced threshold voltage instability of multilayer MoS2 field effect transistors. ACS Nano 2013, 7, 7751–7758.CrossRefGoogle Scholar
  56. [56]
    Buscema, M.; Island, J. O.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 2015, 44, 3691–3718.CrossRefGoogle Scholar
  57. [57]
    Perumal, P.; Ulaganathan, R. K.; Sankar, R.; Liao, Y. M.; Sun, T. M.; Chu, M. W.; Chou, F. C.; Chen, Y. T.; Shih, M. H.; Chen, Y. F. Ultra-thin layered ternary single crystals [Sn(SxSe1–x)2] with bandgap engineering for high performance phototransistors on versatile substrates. Adv. Funct. Mater. 2016, 26, 3630–3638.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Physics, School of Physics and ElectronicsHunan UniversityChangshaChina
  2. 2.Hunan Key Laboratory of two dimensional materials, Department of Applied Physics, School of Physics and ElectronicsHunan UniversityChangshaChina
  3. 3.State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & College of Materials Science and Opto-Electronic TechnologyUniversity of Chinese Academy of SciencesBeijingChina
  4. 4.Hunan Key Laboratory of two dimensional materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaChina

Personalised recommendations