Advertisement

Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy

  • Wenjun Zhu
  • Yu Yang
  • Qiutong Jin
  • Yu Chao
  • Longlong Tian
  • Jingjing Liu
  • Ziliang Dong
  • Zhuang Liu
Research Article
  • 101 Downloads

Abstract

Nanoscale metal organic frameworks (NMOFs) with porous structure and inherent biodegradability are attractive nanomedicine platforms. In addition to conventional particulate NMOFs, two-dimensional (2D) NMOFs are emerging as a unique type of NMOFs which however have been relatively less explored for nanomedicine applications. Herein, 2D-NMOFs composed of Zn2+ and tetrakis(4-carboxyphenyl) porphyrin (TCPP) are fabricated and functionalized with polyethylene glycol (PEG). Compared to their particulate counterpart, such 2D-NMOFs show greatly increased drug loading capacity and enhanced light-triggered singlet oxygen production, promising for chemotherapy and photodynamic therapy (PDT), respectively. Utilizing the porphyrin structure of TCPP, our 2D-NMOFs could be labeled with a diagnostic radioisotope, 99mTc, for single photon emission computer tomography (SPECT) imaging, which reveals efficient tumor homing of those 2D-NMOFs upon intravenous injection. While offering a remarkable synergistic in vivo antitumor effect for the combined chemo-PDT, such 2D-NMOFs show efficient biodegradation and rapid renal clearance. Our work presents the great promise of 2D-NMOFs for nanomedicine applications.

Keywords

nanoscale metal-organic-framework two-dimensional nanosheets drug delivery photodynamic therapy combination therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was partially supported by the National Research Programs from Ministry of Science and Technology (MOST) of China (No. 2016YFA0201200), the National Natural Science Foundation of China (Nos. 51525203 and 51761145041), Collaborative Innovation Center of Suzhou Nano Science and Technology, and a Project Funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Supplementary material

12274_2018_2242_MOESM1_ESM.pdf (3 mb)
Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy

References

  1. [1]
    He, C. B.; Liu, D. M.; Lin, W. B. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079–11108.CrossRefGoogle Scholar
  2. [2]
    Della Rocca, J.; Liu, D. M.; Lin, W. B. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 2011, 44, 957–968.CrossRefGoogle Scholar
  3. [3]
    Li, H. L.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279.CrossRefGoogle Scholar
  4. [4]
    Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.CrossRefGoogle Scholar
  5. [5]
    Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C. et al. Porous metal-organicframework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178.CrossRefGoogle Scholar
  6. [6]
    Huxford, R. C.; Della Rocca, J.; Lin, W. B. Metal–organic frameworks as potential drug carriers. Curr. Opin. Chem. Biol. 2010, 14, 262–268.CrossRefGoogle Scholar
  7. [7]
    Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. 2006, 118, 6120–6124.CrossRefGoogle Scholar
  8. [8]
    McKinlay, A. C.; Morris, R. E.; Horcajada, P.; Férey, G.; Gref, R.; Couvreur, P.; Serre, C. Biomofs: Metal–organic frameworks for biological and medical applications. Angew. Chem., Int. Ed. 2010, 49, 6260–6266.CrossRefGoogle Scholar
  9. [9]
    Tafipolsky, M.; Schmid, R. Systematic first principles parameterization of force fields for metal–organic frameworks using a genetic algorithm approach. J. Phys. Chem. B 2009, 113, 1341–1352.CrossRefGoogle Scholar
  10. [10]
    Morris, W.; Briley, W. E.; Auyeung, E.; Cabezas, M. D.; Mirkin, C. A. Nucleic acid–metal organic framework (MOF) nanoparticle conjugates. J. Am. Chem. Soc. 2014, 136, 7261–7264.CrossRefGoogle Scholar
  11. [11]
    Yang, Y.; Zhu, W. J.; Dong, Z. L.; Chao, Y.; Xu, L.; Chen, M. W.; Liu, Z. 1D coordination polymer nanofibers for low–temperature photothermal therapy. Adv. Mater. 2017, 29, 1703588.CrossRefGoogle Scholar
  12. [12]
    Yang, Y.; Chao, Y.; Liu, J. J.; Dong, Z. L.; He, W. W.; Zhang, R.; Yang, K.; Chen, M. W.; Liu, Z. Core-shell and co-doped nanoscale metal-organic particles (NMOPs) obtained via post-synthesis cation exchange for multimodal imaging and synergistic thermo-radiotherapy. NPG Asia Mater. 2017, 9, e344.CrossRefGoogle Scholar
  13. [13]
    Yang, Y.; Liu, J. J.; Liang, C.; Feng, L. Z.; Fu, T. T.; Dong, Z. L.; Chao, Y.; Li, Y. G.; Lu, G.; Chen, M. W. et al. Nanoscale metal–organic particles with rapid clearance for magnetic resonance imaging-guided photothermal therapy. ACS Nano 2016, 10, 2774–2781.CrossRefGoogle Scholar
  14. [14]
    Liu, J. J.; Yang, Y.; Zhu, W. W.; Yi, X.; Dong, Z. L.; Xu, X. N.; Chen, M. W.; Yang, K.; Lu, G.; Jiang, L. X. et al. Nanoscale metal−organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials 2016, 97, 1–9.CrossRefGoogle Scholar
  15. [15]
    Lu, K. D.; He, C. B.; Lin, W. B. A chlorin-based nanoscale metal–organic framework for photodynamic therapy of colon cancers. J. Am. Chem. Soc. 2015, 137, 7600–7603.CrossRefGoogle Scholar
  16. [16]
    Park, J.; Jiang, Q.; Feng, D. W.; Mao, L. Q.; Zhou, H. C. Size-controlled synthesis of porphyrinic metal–organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc. 2016, 138, 3518–3525.CrossRefGoogle Scholar
  17. [17]
    Yu, B.; Wei, H.; He, Q. J.; Ferreira, C. A.; Kutyreff, C. J.; Ni, D. L.; Rosenkrans, Z. T.; Cheng, L.; Yu, F. Q.; Engle, J. W. et al. Efficient uptake of 177Lu–porphyrin–PEG nanocomplexes by tumor mitochondria for multimodal-imaging-guided combination therapy. Angew. Chem., Int. Ed. 2018, 57, 218–222.CrossRefGoogle Scholar
  18. [18]
    Lebedev, O. I.; Millange, F.; Serre, C.; Van Tendeloo, G.; Férey, G. First direct imaging of giant pores of the metal–organic framework MIL-101. Chem. Mater. 2005, 17, 6525–6527.CrossRefGoogle Scholar
  19. [19]
    Taylor, K. M. L.; Rieter, W. J.; Lin, W. B. Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging. J. Am. Chem. Soc. 2008, 130, 14358–14359.CrossRefGoogle Scholar
  20. [20]
    Taylor-Pashow, K. M. L.; Rocca, J. D.; Xie, Z. G.; Tran, S.; Lin, W. B. Postsynthetic modifications of iron-carboxylate nanoscale metal–organic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 2009, 131, 14261–14263.CrossRefGoogle Scholar
  21. [21]
    He, C. B.; Lu, J. Q.; Lin, W. B. Hybrid nanoparticles for combination therapy of cancer. J. Control. Release 2015, 219, 224–236.CrossRefGoogle Scholar
  22. [22]
    Pastorin, G.; Wu, W.; Wieckowski, S.; Briand, J. P.; Kostarelos, K.; Prato, M.; Bianco, A. Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem. Commun. 2006, 11, 1182–1184.CrossRefGoogle Scholar
  23. [23]
    Cao, A. N.; Liu, Z.; Chu, S. S.; Wu, M. H.; Ye, Z. M.; Cai, Z. W.; Chang, Y. L.; Wang, S. F.; Gong, Q. H.; Liu, Y. F. A facile one-step method to produce graphene–CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater. 2010, 22, 103–106.CrossRefGoogle Scholar
  24. [24]
    Yang, K.; Zhang, S.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323.CrossRefGoogle Scholar
  25. [25]
    Yang, K.; Feng, L. Z.; Shi, X. Z.; Liu, Z. Nano-graphene in biomedicine: Theranostic applications. Chem. Soc. Rev. 2013, 42, 530–547.CrossRefGoogle Scholar
  26. [26]
    Lv, R. T.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y. F.; Mallouk, T. E.; Terrones, M. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single-and few-layer nanosheets. Acc. Chem. Res. 2014, 48, 56–64.CrossRefGoogle Scholar
  27. [27]
    Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: Mxenes: A new family of two–dimensional materials. Adv. Mater. 2014, 26, 992–1005.CrossRefGoogle Scholar
  28. [28]
    Yin, W. Y.; Yan, L.; Yu, J.; Tian, G.; Zhou, L. J.; Zheng, X. P.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z. J. et al. High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 2014, 8, 6922–6933.CrossRefGoogle Scholar
  29. [29]
    Lai, H. Q.; Zhang, X.; Feng, P. J.; Xie, L. N.; Chen, J. J.; Chen, T. F. Enhancement of antiangiogenic efficacy of iron(II) complex by selenium substitution. Chem. Asian J. 2017, 12, 982–987.CrossRefGoogle Scholar
  30. [30]
    Peng, Y.; Li, Y. S.; Ban, Y. J.; Jin, H.; Jiao, W. M.; Liu, X. L.; Yang, W. S. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 2014, 346, 1356–1359.CrossRefGoogle Scholar
  31. [31]
    Zhao, M. T.; Wang, Y. X.; Ma, Q. L.; Huang, Y.; Zhang, X.; Ping, J. F.; Zhang, Z. C.; Lu, Q. P.; Yu, Y. F.; Xu, H. et al. Ultrathin 2D metal-organic framework nanosheets. Adv. Mater. 2015, 27, 7372–7378.CrossRefGoogle Scholar
  32. [32]
    Prencipe, G.; Tabakman, S. M.; Welsher, K.; Liu, Z.; Goodwin, A. P.; Zhang, L.; Henry, J.; Dai, H. J. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J. Am. Chem. Soc. 2009, 131, 4783–4787.CrossRefGoogle Scholar
  33. [33]
    Choi, E. Y.; Wray, C. A.; Hu, C. H.; Choe, W. Highly tunable metal–organic frameworks with open metal centers. CrystEngComm 2009, 11, 553–555.CrossRefGoogle Scholar
  34. [34]
    Wang, K. P.; Wang, J.; Fan, J. T.; Lotya, M.; O’Neill, A.; Fox, D.; Feng, Y. Y.; Zhang, X. Y.; Jiang, B. X.; Zhao, Q. Z. et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 2013, 7, 9260–9267.CrossRefGoogle Scholar
  35. [35]
    Feng, J.; Sun, X.; Wu, C. Z.; Peng, L. L.; Lin, C. C.; Hu, S. L.; Yang, J. H.; Xie, Y. Metallic few-layered VS2 ultrathin nanosheets: High twodimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 2011, 133, 17832–17838.CrossRefGoogle Scholar
  36. [36]
    Lu, K. D.; He, C. B.; Lin, W. B. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc. 2014, 136, 16712–16715.CrossRefGoogle Scholar
  37. [37]
    Fan, W. P.; Yung, B.; Huang, P.; Chen, X. Y. Nanotechnology for multimodal synergistic cancer therapy. Chem. Rev. 2017, 117, 13566–13638.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wenjun Zhu
    • 1
  • Yu Yang
    • 2
  • Qiutong Jin
    • 1
  • Yu Chao
    • 1
  • Longlong Tian
    • 1
  • Jingjing Liu
    • 1
  • Ziliang Dong
    • 1
  • Zhuang Liu
    • 1
  1. 1.Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-based Functional Materials and DevicesSoochow UniversitySuzhouChina
  2. 2.State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauTaipa, MacauChina

Personalised recommendations