Nano Research

, Volume 12, Issue 2, pp 457–462 | Cite as

Single titanium-oxide species implanted in 2D g-C3N4 matrix as a highly efficient visible-light CO2 reduction photocatalyst

  • Shangfeng Tang
  • Xuepeng Yin
  • Guanyu Wang
  • Xiuli LuEmail author
  • Tongbu LuEmail author
Research Article


A visible-light-response, efficient and robust photo-catalyst for CO2 reduction is highly desirable. Herein, we demonstrate that single titanium-oxide species implanted in two-dimensional (2D) graphitic carbon nitride (g-C3N4) matrix (2D TiO-CN) can efficiently photo-catalyze the reduction of CO2 to CO under the irradiation of visible light. The synergistic interaction between single titanium oxide species and g-C3N4 in 2D TiO-CN not only enhances the separation of photo-excited charges, but also results in visible light response of single titanium-oxide species, realizing high activity of CO2 photo-reduction with extremely high CO generation rate of 283.9 μmol·h−1·g−1, 5.7, 6.8 and 292.2 times larger than those of TiO2/CN hybrid material, CN and commercial TiO2, respectively. Time-resolved fluorescence and electron spin resonance spectroscopy revealed the catalytic mechanism of the fabricated 2D TiO-CN photocatalysts for CO2 reduction.


single atom catalyst graphitic carbon nitride two-dimensional (2D) photocatalysts visible-light CO2 reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key R&D Program of China (No. 2017YFA0700104), the National Natural Science Foundation of China (Nos. 21790052, 21331007 and 21805207), and 111 Project of China (No. D17003).

Supplementary material

12274_2018_2240_MOESM1_ESM.pdf (4.3 mb)
Single titanium-oxide species implanted in 2D g-C3N4 matrix as a highly efficient visible-light CO2 reduction photocatalyst


  1. [1]
    Shown, I.; Samireddi, S.; Chang, Y. C.; Putikam, R.; Chang, P. H.; Sabbah, A.; Fu, F. Y.; Chen, W. F.; Wu, C. I.; Yu, T. Y. et al. Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light. Nat. Commun. 2018, 9, 169.CrossRefGoogle Scholar
  2. [2]
    Liang, L.; Li, X. D.; Sun, Y. F.; Tan, Y. L.; Jiao, X. C.; Ju, H. X.; Qi, Z. M.; Zhu, J. F.; Xie, Y. Infrared light-driven CO2 overall splitting at room temperature. Joule 2018, 2, 1004–1016.CrossRefGoogle Scholar
  3. [3]
    Long, R.; Li, Y.; Liu, Y.; Chen, S. M.; Zheng, X. S.; Gao, C.; He, C. H.; Chen, N. S.; Qi, Z. M.; Song, L. et al. Isolation of Cu atoms in Pd lattice: Forming highly selective sites for photocatalytic conversion of CO2 to CH4. J. Am. Chem. Soc. 2017, 139, 4486–4492.CrossRefGoogle Scholar
  4. [4]
    Ouyang, T.; Huang, H. H.; Wang, J. W.; Zhong, D. C.; Lu, T. B. A dinuclear cobalt cryptate as a homogeneous photocatalyst for highly selective and efficient visible-light driven CO2 reduction to CO in CH3CN/H2O solution. Angew. Chem., Int. Ed. 2017, 56, 738–743.CrossRefGoogle Scholar
  5. [5]
    Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.CrossRefGoogle Scholar
  6. [6]
    Wang, S. B.; Guan, B. Y.; Lu, Y.; Lou, X. W. Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction. J. Am. Chem. Soc. 2017, 139, 17305–17308.CrossRefGoogle Scholar
  7. [7]
    Pan, Y. X.; You, Y.; Xin, S.; Li, Y. T.; Fu, G. T.; Cui, Z. M.; Men, Y. L.; Cao, F. F.; Yu, S. H.; Goodenough, J. B. Photocatalytic CO2 reduction by carbon-coated indium-oxide nanobelts. J. Am. Chem. Soc. 2017, 139, 4123–4129.CrossRefGoogle Scholar
  8. [8]
    Liu, W.; Cao, L. L.; Cheng, W. R.; Cao, Y. J.; Liu, X. K.; Zhang, W.; Mou, X. L.; Jin, L. L.; Zheng, X. S.; Che, W. et al. Single-site active cobaltbased photocatalyst with a long carrier lifetime for spontaneous overall water splitting. Angew. Chem., Int. Ed. 2017, 56, 9312–9317.CrossRefGoogle Scholar
  9. [9]
    Li, X. G.; Bi, W. T.; Chen, M. L.; Sun, Y. X.; Ju, H. X.; Yan, W. S.; Zhu, J. F.; Wu, X. J.; Chu, W. S.; Wu, C. Z. et al. Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J. Am. Chem. Soc. 2017, 139, 14889–14892.CrossRefGoogle Scholar
  10. [10]
    Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948.CrossRefGoogle Scholar
  11. [11]
    Gao, C.; Chen, S. M.; Wang, Y.; Wang, J. W.; Zheng, X. S.; Zhu, J. F.; Song, L.; Zhang, W. K.; Xiong, Y. J. Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: The role of electron transfer. Adv. Mater. 2018, 30, 1704624.CrossRefGoogle Scholar
  12. [12]
    Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H. Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ. Sci. 2012, 5, 9217–9233.CrossRefGoogle Scholar
  13. [13]
    Mori, K.; Yamashita, H.; Anpo, M. Photocatalytic reduction of CO2 with H2O on various titanium oxide photocatalysts. RSC Adv. 2012, 2, 3165–3172.CrossRefGoogle Scholar
  14. [14]
    Fu, Y. H.; Sun, D. R.; Chen, Y. J.; Huang, R. K.; Ding, Z. X.; Fu, X. Z.; Li, Z. H. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem., Int. Ed. 2012, 51, 3364–3367.CrossRefGoogle Scholar
  15. [15]
    Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.CrossRefGoogle Scholar
  16. [16]
    Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater., in press, DOI: 10.1007/s40843-018-9324-0.Google Scholar
  17. [17]
    Tian, S. B.; Wang, Z. Y.; Gong, W. B.; Chen, W. X.; Feng, Q. C.; Xu, Q.; Chen, C.; Chen, C.; Peng, Q.; Gu, L. et al. Temperature-controlled selectivity of hydrogenation and hydrodeoxygenation in the conversion of biomass molecule by the Ru1/mpg-C3N4 catalyst. J. Am. Chem. Soc. 2018, 140, 11161–11164.CrossRefGoogle Scholar
  18. [18]
    Tian, S. B.; Fu, Q.; Chen, W. X.; Feng, Q. C.; Chen, Z.; Zhang, J.; Cheong, W. C.; Yu, R.; Gu, L.; Dong, J. C. et al. Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 2018, 9, 2353.CrossRefGoogle Scholar
  19. [19]
    Wang, X. Q.; Wang, W. Y.; Qiao, M.; Wu, G.; Chen, W. X.; Yuan, T. W.; Xu, Q.; Chen, M.; Zhang, Y.; Wang, X. et al. Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia. Sci. Bull. 2018, 63, 1246–1253.CrossRefGoogle Scholar
  20. [20]
    Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.CrossRefGoogle Scholar
  21. [21]
    Wada, K.; Ranasinghe, C. S. K.; Kuriki, R.; Yamakata, A.; Ishitani, O.; Maeda, K. Interfacial manipulation by rutile TiO2 nanoparticles to boost CO2 reduction into CO on a metal-complex/semiconductor hybrid photocatalyst. ACS Appl. Mater. Interfaces 2017, 9, 23869–23877.CrossRefGoogle Scholar
  22. [22]
    Fang, Y. X.; Wang, X. C. Photocatalytic CO2 conversion by polymeric carbon nitrides. Chem. Commun. 2018, 54, 5674–5687.CrossRefGoogle Scholar
  23. [23]
    Cometto, C.; Kuriki, R.; Chen, L. J.; Maeda, K.; Lau, T. C.; Ishitani, O.; Robert, M. A carbon nitride/Fe quaterpyridine catalytic system for photostimulated CO2-to-CO conversion with visible light. J. Am. Chem. Soc. 2018, 140, 7437–7440.CrossRefGoogle Scholar
  24. [24]
    Xu, G. L.; Zhang, H. B.; Wei, J.; Zhang, H. X.; Wu, X.; Li, Y.; Li, C. S.; Zhang, J.; Ye, J. H. Integrating the g-C3N4 nanosheet with B–H bonding decorated metal-organic framework for CO2 activation and photoreduction. ACS Nano 2018, 12, 5333–5340.CrossRefGoogle Scholar
  25. [25]
    Liu, X. L.; Wang, P.; Zhai, H. S.; Zhang, Q. Q.; Huang, B. B.; Wang, Z. Y.; Liu, Y. Y.; Dai, Y.; Qin, X. Y.; Zhang, X. Y. Synthesis of synergetic phosphorus and cyano groups (–C=N) modified g-C3N4 for enhanced photocatalytic H2 production and CO2 reduction under visible light irradiation. Appl. Catal. B Environ. 2018, 232, 521–530.CrossRefGoogle Scholar
  26. [26]
    Wang, X. C.; Chen, X. F.; Thomas, A.; Fu, X. Z.; Antonietti, M. Metalcontaining carbon nitride compounds: A new functional organic-metal hybrid material. Adv. Mater. 2009, 21, 1609–1612.CrossRefGoogle Scholar
  27. [27]
    Li, X. G.; Bi, W. T.; Zhang, L.; Tao, S.; Chu, W. S.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Single-atom Pt as Co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427–2431.CrossRefGoogle Scholar
  28. [28]
    Chen, Z. P.; Mitchell, S.; Vorobyeva, E.; Leary, R. K.; Hauert, R.; Furnival, T.; Ramasse, Q. M.; Thomas, J. M.; Midgley, P. A.; Dontsova, D. et al. Stabilization of single metal atoms on graphitic carbon nitride. Adv. Funct. Mater. 2017, 27, 1605785.CrossRefGoogle Scholar
  29. [29]
    Lu, X. L.; Xu, K.; Tao, S.; Shao, Z. W.; Peng, X.; Bi, W. T.; Chen, P. Z.; Ding, H.; Chu, W. S.; Wu, C. Z. et al. Engineering the electronic structure of two-dimensional subnanopore nanosheets using molecular titaniumoxide incorporation for enhanced photocatalytic activity. Chem. Sci. 2016, 7, 1462–1467.CrossRefGoogle Scholar
  30. [30]
    Lin, T. Q.; Yang, C. Y.; Wang, Z.; Yin, H.; Lü, X. J.; Huang, F. Q.; Lin, J. H.; Xie, X. M.; Jiang, M. H. Effective nonmetal incorporation in black titania with enhanced solar energy utilization. Energy Environ. Sci. 2014, 7, 967–972.CrossRefGoogle Scholar
  31. [31]
    Xing, M. Y.; Shen, F.; Qiu, B. C.; Zhang, J. L. Highly-dispersed borondoped graphene nanosheets loaded with TiO2 nanoparticles for enhancing CO2 photoreduction. Sci. Rep. 2014, 4, 6341.CrossRefGoogle Scholar
  32. [32]
    Cao, S. W.; Li, H.; Tong, T.; Chen, H. C.; Yu, A. C.; Yu, J. G.; Chen, H. M. Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1802169.CrossRefGoogle Scholar
  33. [33]
    Wu, J.; Li, X. D.; Shi, W.; Ling, P. Q.; Sun, Y. F.; Jiao, X. C.; Gao, S.; Liang, L.; Xu, J. Q.; Yan, W. S. et al. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew. Chem., Int. Ed. 2018, 57, 8719–8723.CrossRefGoogle Scholar
  34. [34]
    Zhang, F. M.; Sheng, J. L.; Yang, Z. D.; Sun, X. J.; Tang, H. L.; Lu, M.; Dong, H.; Shen, F. C.; Liu, J.; Lan, Y. Q. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew. Chem., Int. Ed. 2018, 57, 12106–12110.CrossRefGoogle Scholar
  35. [35]
    Lin, J. L.; Pan, Z. M.; Wang, X. C. Photochemical reduction of CO2 by graphitic carbon nitride polymers. ACS Sustain. Chem. Eng. 2014, 2, 353–358.CrossRefGoogle Scholar
  36. [36]
    Yang, L. Q.; Huang, J. F.; Shi, L.; Cao, L. Y.; Liu, H. M.; Liu, Y. Y.; Li, Y. X.; Song, H.; Jie, Y. N.; Ye, J. H. Sb doped SnO2-decorated porous g-C3N4 nanosheet heterostructures with enhanced photocatalytic activities under visible light irradiation. Appl. Catal. B Environ. 2018, 221, 670–680.CrossRefGoogle Scholar
  37. [37]
    Tonda, S.; Kumar, S.; Bhardwaj, M.; Yadav, P.; Ogale, S. g-C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high-performance photocatalytic reduction of CO2 into renewable fuels. ACS Appl. Mater. Interfaces 2018, 10, 2667–2678.CrossRefGoogle Scholar
  38. [38]
    He, Y. M.; Zhang, L. H.; Fan, M. H.; Wang, X. X.; Walbridge, M. L.; Nong, Q. Y.; Wu, Y.; Zhao, L. H. Z-scheme SnO2–x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Sol. Energy Mat. Sol. Cells 2015, 137, 175–184.CrossRefGoogle Scholar
  39. [39]
    Jiang, Z. F.; Wan, W. M.; Li, H. M.; Yuan, S. Q.; Zhao, H. J.; Wong, P. K. A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Adv. Mater. 2018, 30, 1706108.CrossRefGoogle Scholar
  40. [40]
    Bai, Y.; Ye, L. Q.; Wang, L.; Shi, X.; Wang, P. Q.; Bai, W.; Wong, P. K. g-C3N4/Bi4O5I2 heterojunction with I3–/Iredox mediator for enhanced photocatalytic CO2 conversion. Appl. Catal. B Environ. 2016, 194, 98–104.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for New Energy Materials & Low Carbon Technologies, School of Materials Science and EngineeringTianjin University of TechnologyTianjinChina

Personalised recommendations