Advertisement

Nano Research

, Volume 12, Issue 2, pp 449–455 | Cite as

Plasmon-tunable Au@Ag core-shell spiky nanoparticles for surface-enhanced Raman scattering

  • Zhulin Huang
  • Guowen Meng
  • Xiaoye Hu
  • Qijun Pan
  • Dexian Huo
  • Hongjian Zhou
  • Yan Ke
  • Nianqiang Wu
Research Article
  • 51 Downloads

Abstract

A facile synthetic approach has been developed to prepare uniform and size-tunable spiky Au@Ag core-shell nanoparticles (NPs) to tailor the localized surface plasmon resonance (LSPR) properties. The gradual assembly of small Au nanocrystals allows the size of spiky Au NPs to be modulated from tens to several hundreds of nanometers by tuning the concentration of initial Au seeds and Au source; and the thickness of the Ag shell can be adjusted with stepwise reduction of Ag(I) ions. The LSPR bands of such spiky Au@Ag core-shell NPs resemble those of pure spiky Au NP cores of similar sizes in near-infrared region, and increasing the Ag shell thickness results in a blue shift and broadening of the LSPR band in the near-infrared region. Additionally, the spiky Au@Ag core-shell NPs exhibit improved surface-enhanced Raman scattering (SERS) activity as compared to the bare spiky Au NPs and spherical Ag@Au NPs. This work has offered a facile route to synthesize plasmonic metal NPs with LSPR band in 650 to 800 nm that show strong enhancement of localized electromagnetic field, which provides an effective SERS substrate for SERS imaging and detection in biological fluids and tissues.

Keywords

localized surface plasmon resonance gold silver surface-enhanced Raman spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Basic Research Program of China (No. 2013CB934304), Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSW-SLH046), the CAS/SAFEA International Partnership Program for Creative Research Teams, the Natural Science Foundation of China (Nos. 21673245, 51632009, 51628202, 51472245 and 51671186), Hefei Institutes of Physical Sciences, CAS, and the Youth Innovation Promotion Association of CAS.

Supplementary material

12274_2018_2238_MOESM1_ESM.pdf (7 mb)
Plasmon-tunable Au@Ag core-shell spiky nanoparticles for surface-enhanced Raman scattering

References

  1. [1]
    Lee, K. S.; El-Sayed, M. A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of Plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006, 110, 19220–19225.CrossRefGoogle Scholar
  2. [2]
    Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed. M. A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008, 41, 1578–1586.CrossRefGoogle Scholar
  3. [3]
    Huang, P.; Pandoli, O.; Wang, X. S.; Wang, Z.; Li, Z. M.; Zhang, C. L.; Chen, F.; Lin, J.; Cui, D. X.; Chen, X. Y. Chiral guanosine 5′-monophosphate-capped gold nanoflowers: Controllable synthesis, characterization, surface-enhanced Raman scattering activity, cellular imaging and photothermal therapy. Nano Res. 2012, 5, 630–639.CrossRefGoogle Scholar
  4. [4]
    Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 2006, 311, 189–193.CrossRefGoogle Scholar
  5. [5]
    Hao, C. L.; Xu, L. G.; Ma, W.; Wu, X. L.; Wang, L. B.; Kuang, H.; Xu, C. L. Unusual circularly polarized photocatalytic activity in nanogapped gold-silver chiroplasmonic nanostructures. Adv. Funct. Mater. 2015, 25, 5816–5822.CrossRefGoogle Scholar
  6. [6]
    Wu, N. Q. Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: A review. Nanoscale 2018, 10, 2679–2696.CrossRefGoogle Scholar
  7. [7]
    Hou, W. B.; Cronin, S. B. A review of surface Plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 2013, 23, 1612–1619.CrossRefGoogle Scholar
  8. [8]
    Collins, G.; Holmes, J. D. Engineering metallic nanoparticles for enhancing and probing catalytic reactions. Adv. Mater. 2016, 28, 5689–5695.CrossRefGoogle Scholar
  9. [9]
    Yang, S. K.; Lapsley, M. I.; Cao, B. Q.; Zhao, C. L.; Zhao, Y. H.; Hao, Q. Z.; Kiraly, B.; Scott, J.; Li, W. Z.; Wang, L. et al. Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition. Adv. Funct. Mater. 2013, 23, 720–730.CrossRefGoogle Scholar
  10. [10]
    Li, M.; Cushing, S. K.; Wu, N. Q. Plasmon-enhanced optical sensors: A review. Analyst 2015, 140, 386–406.CrossRefGoogle Scholar
  11. [11]
    Rodríguez-Lorenzo, L.; Álvarez-Puebla, R. A.; Pastoriza-Santos, I.; Mazzucco, S.; Stéphan, O.; Kociak, M.; Liz-Marzán, L. M.; Javier Garcia de Abajo, F. Zeptomol detection through controlled ultrasensitive surfaceenhanced Raman scattering. J. Am. Chem. Soc. 2009, 131, 4616–4618.CrossRefGoogle Scholar
  12. [12]
    Prikhozhdenko, E. S.; Bratashov, D. N.; Gorin, D. A.; Yashchenok, A. M. Flexible surface-enhanced Raman scattering-active substrates based on nanofibrous membranes. Nano Res. 2018, 11, 4468–4488.CrossRefGoogle Scholar
  13. [13]
    Langguth, L.; Punj, D.; Wenger, J.; Koenderink, A. F. Plasmonic band structure controls single-molecule fluorescence. ACS Nano 2013, 7, 8840–8848.CrossRefGoogle Scholar
  14. [14]
    Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.CrossRefGoogle Scholar
  15. [15]
    Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2008, 48, 60–103.CrossRefGoogle Scholar
  16. [16]
    Yang, S. K.; Lei, Y. Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications. Nanoscale 2011, 3, 2768–2782.CrossRefGoogle Scholar
  17. [17]
    Hamon, C.; Liz-Marzán, L. M. Hierarchical assembly of plasmonic nanoparticles. Chem. Eur.–J. 2015, 21, 9956–9963.CrossRefGoogle Scholar
  18. [18]
    Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 2001, 105, 4065–4067.CrossRefGoogle Scholar
  19. [19]
    Chen, L.; Ji, F.; Xu, Y.; He, L.; Mi, Y. F.; Bao, F.; Sun, B. Q.; Zhang, X. H.; Zhang, Q. High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 2014, 14, 7201–7206.CrossRefGoogle Scholar
  20. [20]
    Qian, H. M.; Xu, M.; Li, X. W.; Ji, M. W.; Cheng, L.; Shoaib, A.; Liu, J. J.; Jiang, L.; Zhu, H. S.; Zhang, J. T. Surface micro/nanostructure evolution of Au-Ag alloy nanoplates: Synthesis, simulation, plasmonic photothermal and surface-enhanced Raman scattering applications. Nano Res. 2016, 9, 876–885.CrossRefGoogle Scholar
  21. [21]
    Yang, Y.; Liu, J. Y.; Fu, Z. W.; Qin, D. Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity. J. Am. Chem. Soc. 2014, 136, 8153–8156.CrossRefGoogle Scholar
  22. [22]
    Ruditskiy, A.; Xia, Y. N. Toward the synthesis of sub-15 nm Ag nanocubes with sharp corners and edges: The roles of heterogeneous nucleation and surface capping. J. Am. Chem. Soc. 2016, 138, 3161–3167.CrossRefGoogle Scholar
  23. [23]
    Henzie, J.; Grünwald, M.; Widmer-Cooper, A.; Geissler, P. L.; Yang, P. D. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 2012, 11, 131–137.CrossRefGoogle Scholar
  24. [24]
    Henzie, J.; Andrews, S. C.; Ling, X. Y.; Li, Z. Y.; Yang, P. D. Oriented assembly of polyhedral plasmonic nanoparticle clusters. Proc. Natl. Acad. Sci. USA 2013, 110, 6640–6645.CrossRefGoogle Scholar
  25. [25]
    Hao, F.; Nehl, C. L.; Hafner, J. H.; Nordlander, P. Plasmon resonances of a gold nanostar. Nano Lett. 2007, 7, 729–732.CrossRefGoogle Scholar
  26. [26]
    Sanchez-Gaytan, B. L.; Swanglap, P.; Lamkin, T. J.; Hickey, R. J.; Fakhraai, Z.; Link, S.; Park, S. J. Spiky gold nanoshells: Synthesis and enhanced scattering properties. J. Phys. Chem. C 2012, 116, 10318–10324.CrossRefGoogle Scholar
  27. [27]
    Zhao, Y.; Sun, M. Z.; Ma, W.; Kuang, H.; Xu, C. L. Biological moleculesgoverned plasmonic nanoparticle dimers with tailored optical behaviors. J. Phys. Chem. Lett. 2017, 8, 5633–5642.CrossRefGoogle Scholar
  28. [28]
    Li, M.; Cushing, S. K.; Zhang, J. M.; Lankford, J.; Aguilar, Z. P.; Ma, D. L.; Wu, N. Q. Shape-dependent surface-enhanced Raman scattering in gold-Raman-probe-silica sandwiched nanoparticles for biocompatible applications. Nanotechnology 2012, 23, 115501.CrossRefGoogle Scholar
  29. [29]
    Barbosa, S.; Agrawal, A.; Rodríguez-Lorenzo, L.; Pastoriza-Santos, I.; Alvarez-Puebla, R. A.; Kornowski, A.; Weller, H.; Liz-Marzan, L. M. Tuning size and sensing properties in colloidal gold nanostars. Langmuir 2010, 26, 14943–14950.CrossRefGoogle Scholar
  30. [30]
    Li, M.; Cushing, S. K.; Zhang, J. M.; Suri, S.; Evans, R.; Petros, W. P.; Gibson, L. F.; Ma, D. L.; Liu, Y. X.; Wu, N. Q. Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma. ACS Nano 2013, 7, 4967–4976.CrossRefGoogle Scholar
  31. [31]
    Niu, W. X.; Chua, Y. A. A.; Zhang, W. Q.; Huang, H. J.; Lu, X. M. Highly symmetric gold nanostars: Crystallographic control and surface-enhanced Raman scattering property. J. Am. Chem. Soc. 2015, 137, 10460–10463.CrossRefGoogle Scholar
  32. [32]
    Li, A. K.; Tang, L. J.; Song, D.; Song, S. S.; Ma, W.; Xu, L. G.; Kuang, H.; Wu, X. L.; Liu, L. Q.; Chen, X.; Xu, C. L. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1. Nanoscale 2016, 8, 1873–1878.CrossRefGoogle Scholar
  33. [33]
    Sekhon, J. S.; Verma, S. S. Refractive index sensitivity analysis of Ag, Au, and Cu nanoparticles. Plasmonics 2011, 6, 311–317.CrossRefGoogle Scholar
  34. [34]
    Ma, Y. Y.; Li, W. Y.; Cho, E. C.; Li, Z. Y.; Yu, T.; Zeng, J.; Xie, Z. X.; Xia, Y. N. Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties. ACS Nano 2010, 4, 6725–6734.CrossRefGoogle Scholar
  35. [35]
    Samal, A. K.; Polavarapu, L.; Rodal-Cedeira, S.; Liz-Marzán, L. M.; Pérez-Juste, J.; Pastoriza-Santos, I. Size tunable Au@Ag core-shell nanoparticles: Synthesis and surface-enhanced Raman scattering properties. Langmuir 2013, 29, 15076–15082.CrossRefGoogle Scholar
  36. [36]
    Goodman, A. M.; Cao, Y.; Urban, C.; Neumann, O.; Ayala-Orozco, C.; Knight, M. W.; Joshi, A.; Nordlander, P.; Halas, N. J. The surprising in vivo instability of near-IR-absorbing hollow Au-Ag nanoshells. ACS Nano 2014, 8, 3222–3231.CrossRefGoogle Scholar
  37. [37]
    Zhou, H. J.; Kim, J. P.; Bahng, J. H.; Kotov, N. A.; Lee, J. Self-assembly mechanism of spiky magnetoplasmonic supraparticles. Adv. Funct. Mater. 2014, 24, 1439–1448.CrossRefGoogle Scholar
  38. [38]
    Huang, Z. L.; Lei, X.; Liu, Y.; Wang, Z. W.; Wang, X. J.; Wang, Z. M.; Mao, Q. H.; Meng, G. W. Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application. ACS Appl. Mater. Interfaces 2015, 7, 17247–17254.CrossRefGoogle Scholar
  39. [39]
    Weaver, J. H.; Frederikse, H. P. R. Optical properties of selected elements. In CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data; 86th ed. Lide, D. R., Ed.; CRC Press: Boca Raton, 2005; pp 134–135.Google Scholar
  40. [40]
    Zhao, L. B.; Huang, Y. F.; Wu, D. Y.; Ren, B. Surface-enhanced Raman spectroscopy and plasmon-assisted photocatalysis of p-aminothiophenol. Acta Chim. Sin. 2014, 72, 1125–1138.CrossRefGoogle Scholar
  41. [41]
    Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803.CrossRefGoogle Scholar
  42. [42]
    Zhu, C. H.; Meng, G. W.; Zheng, P.; Huang, Q.; Li, Z. B.; Hu, X. Y.; Wang, X. J.; Huang, Z. L.; Li, F. D.; Wu, N. Q. A hierarchically ordered array of silver-nanorod bundles for surface-enhanced Raman scattering detection of phenolic pollutants. Adv. Mater. 2016, 28, 4871–4876.CrossRefGoogle Scholar
  43. [43]
    Ma, L. W.; Huang, Y.; Hou, M. J.; Xie, Z.; Zhang, Z. J. Silver nanorods wrapped with ultrathin Al2O3 layers exhibiting excellent SERS sensitivity and outstanding SERS stability. Sci. Rep. 2015, 5, 12890.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhulin Huang
    • 1
  • Guowen Meng
    • 1
    • 2
  • Xiaoye Hu
    • 1
  • Qijun Pan
    • 1
    • 2
  • Dexian Huo
    • 1
    • 2
  • Hongjian Zhou
    • 1
  • Yan Ke
    • 1
  • Nianqiang Wu
    • 3
  1. 1.Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Technology, Institute of Solid State PhysicsChinese Academy of SciencesHefeiChina
  2. 2.University of Science and Technology of ChinaHefeiChina
  3. 3.Department of Mechanical and Aerospace EngineeringWest Virginia UniversityMorgantownUSA

Personalised recommendations