Nano Research

, Volume 12, Issue 2, pp 437–440 | Cite as

Facile synthesis of ultrathin metal-organic framework nanosheets for Lewis acid catalysis

  • Xiaofei Zhang
  • Lin Chang
  • Zhongjie Yang
  • Yanan Shi
  • Chang Long
  • Jianyu Han
  • Binhao Zhang
  • Xueying Qiu
  • Guodong LiEmail author
  • Zhiyong TangEmail author
Research Article


Ultrathin metal-organic framework (MOF) nanosheets are attracting great interest in catalysis due to their unique and intriguing two-dimensional (2D) features. Although many progresses have been achieved, it is still highly desirable to develop novel strategies for controllable synthesis of the well-defined ultrathin MOF nanosheets. Herein we report a polyvinylpyrrolidone (PVP)-assisted route to synthesize the ultrathin Ni-MOF nanosheets characteristic of 1.5 nm in thickness, in which PVP is reacted with 2-aminoterephthalic acid (H2BDC-NH2) via formation of C=N bond, followed by coordination with Ni2+ ions to form the ultrathin MOF nanosheets. Impressively, when used in the Knoevenagel condensation reactions of propane dinitrile with different aldehydes, ultrathin Ni-MOF nanosheets display the significantly enhanced catalytic activity and good stability in respect with the bulk Ni-MOF, mainly owing to the exposed active sites as well as facile mass transfer and diffusion of substrates and products.


ultrathin nanosheet metal-organic framework Lewis acid site Knoevenagel condensation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported financially by the National Key Basic Research Program of China (Nos. 2014CB931801 and 2016YFA0200700, Z. Y. T.), National Natural Science Foundation of China (Nos. 21890381, 21721002 and 21475029, Z. Y. T.; 21722102, 51672053 and 21303029, G. D. L.), Beijing Natural Science Foundation (No. 2182087, G. D. L.), Frontier Science Key Project of Chinese Academy of Sciences (No. QYZDJ-SSW-SLH038, Z. Y. T.), K. C. Wong Education Foundation (Z. Y. T.), and Youth Innovation Promotion Association CAS (No. 2016036, G. D. L.).

Supplementary material

12274_2018_2235_MOESM1_ESM.pdf (1.6 mb)
Facile synthesis of ultrathin metal-organic framework nanosheets for Lewis acid catalysis


  1. [1]
    Yaghi, O. M.; Li, H. L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 1995, 117, 10401–10402.CrossRefGoogle Scholar
  2. [2]
    Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.CrossRefGoogle Scholar
  3. [3]
    Lu, W. G.; Wei, Z. W.; Gu, Z.-Y.; Liu, T.-F.; Park, J.; Park, J.; Tian, J.; Zhang, M. W.; Zhang, Q.; Gentle, T., III. et al. Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 2014, 43, 5561–5593.CrossRefGoogle Scholar
  4. [4]
    Helal, A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. Multivariate metalorganic frameworks. Nat. Sci. Rev. 2017, 4, 296–298.CrossRefGoogle Scholar
  5. [5]
    Chen, L. Y.; Luque, R.; Li, Y. W. Controllable design of tunable nanostructures inside metal-organic frameworks. Chem. Soc. Rev. 2017, 46, 4614–4630.CrossRefGoogle Scholar
  6. [6]
    Li, X. L.; van Zeeland, R.; Maligal-Ganesh, R. V.; Pei, Y. C.; Power, G.; Stanley, L.; Huang, W. Y. Impact of linker engineering on the catalytic activity of metal-organic frameworks containing Pd(II)-bipyridine complexes. ACS Catal. 2016, 6, 6324–6328.CrossRefGoogle Scholar
  7. [7]
    Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metalorganic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.CrossRefGoogle Scholar
  8. [8]
    Hwang, Y. K.; Hong, D.-Y.; Chang, J.-S.; Jhung, S. H.; Seo, Y.-K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Férey, G. Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation. Angew. Chem., Int. Ed. 2008, 47, 4144–4148.CrossRefGoogle Scholar
  9. [9]
    Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.CrossRefGoogle Scholar
  10. [10]
    Peng, Y. W.; Huang, Y.; Zhu, Y. H.; Chen, B.; Wang, L. Y.; Lai, Z. C.; Zhang, Z. C.; Zhao, M. T.; Tan, C. L.; Yang, N. L. et al. Ultrathin two-dimensional covalent organic framework nanosheets: Preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 2017, 139, 8698–8704.CrossRefGoogle Scholar
  11. [11]
    Dong, J. Q.; Zhang, K.; Li, X.; Qian, Y. H.; Zhu, H.; Yuan, D. Q.; Xu, Q.-H.; Jiang, J. W.; Zhao, D. Ultrathin two-dimensional porous organic nanosheets with molecular rotors for chemical sensing. Nat. Commun. 2017, 8, 1142.CrossRefGoogle Scholar
  12. [12]
    Cao, L. Y.; Lin, Z. K.; Peng, F.; Wang, W. W.; Huang, R. Y.; Wang, C.; Yan, J. W.; Liang, J.; Zhang, Z. M.; Zhang, T. et al. Self-supporting metalorganic layers as single-site solid catalysts. Angew. Chem., Int. Ed. 2016, 55, 4962–4966.CrossRefGoogle Scholar
  13. [13]
    Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 2100–2104.CrossRefGoogle Scholar
  14. [14]
    Moon, H.; Seong, H.; Shin, W. C.; Park, W.-T.; Kim, M.; Lee, S.; Bong, J. H.; Noh, Y.-Y.; Cho, B. J.; Yoo, S. et al. Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics. Nat. Mater. 2015, 14, 628–635.CrossRefGoogle Scholar
  15. [15]
    Kory, M. J.; Wörle, M.; Weber, T.; Payamyar, P.; van de Poll, S. W.; Dshemuchadse, J.; Trapp, N.; Schlüter, A. D. Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat. Chem. 2014, 6, 779–784.CrossRefGoogle Scholar
  16. [16]
    Li, P. Z.; Maeda, Y.; Xu, Q. Top-down fabrication of crystalline metal–organic framework nanosheets. Chem. Commun. 2011, 47, 8436–8438.CrossRefGoogle Scholar
  17. [17]
    Chandra, S.; Kandambeth, S.; Biswal, B. P.; Lukose, B.; Kunjir, S. M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 2013, 135, 17853–17861.CrossRefGoogle Scholar
  18. [18]
    Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.CrossRefGoogle Scholar
  19. [19]
    Liu, W.; Luo, X.; Bao, Y.; Liu, Y. P.; Ning, G.-H.; Abdelwahab, I.; Li, L. J.; Nai, C. T.; Hu, Z. G.; Zhao, D. et al. A two-dimensional conjugated aromatic polymer via C–C coupling reaction. Nat. Chem. 2017, 9, 563–570.CrossRefGoogle Scholar
  20. [20]
    Sahabudeen, H.; Qi, H. Y.; Glatz, B. A.; Tranca, D.; Dong, R. H.; Hou, Y.; Zhang, T.; Kuttner, C.; Lehnert, T.; Seifert, G. et al. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat. Commun. 2016, 7, 13461.CrossRefGoogle Scholar
  21. [21]
    Weber, J.; Thomas, A. Toward stable interfaces in conjugated polymers: Microporous poly(p-phenylene) and poly(phenyleneethynylene) based on a spirobifluorene building block. J. Am. Chem. Soc. 2008, 130, 6334–6335.CrossRefGoogle Scholar
  22. [22]
    Zhao, M. T.; Wang, Y. X.; Ma, Q. L.; Huang, Y.; Zhang, X.; Ping, J. F.; Zhang, Z. C.; Lu, Q. P.; Yu, Y. F.; Xu, H. et al. Ultrathin 2D metal-organic framework nanosheets. Adv. Mater. 2015, 27, 7372–7378.CrossRefGoogle Scholar
  23. [23]
    Guo, J.; Zhang Y.; Zhu, Y. F.; Long, C.; Zhao, M. T.; He, M.; Zhang, X. F.; Lv, J. W.; Han, B.; Tang, Z. Y. Ultrathin chiral metal-organic-framework nanosheets for efficient enantioselective separation. Angew. Chem., Int. Ed. 2018, 130, 6989–6993.CrossRefGoogle Scholar
  24. [24]
    Zhang, Z. C.; Chen, Y. F.; He, S.; Zhang, J. C.; Xu, X. B.; Yang, Y.; Nosheen, F.; Saleem, F.; He, W.; Wang, X. Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions. Angew. Chem., Int. Ed. 2014, 126, 12725–12729.CrossRefGoogle Scholar
  25. [25]
    Yang, J.; Xiong, P. X.; Zheng, C.; Qiu, H. Y.; Wei, M. D. Metal-organic frameworks: A new promising class of materials for a high performance supercapacitor electrode. J. Mater. Chem. A 2014, 2, 16640–16644.CrossRefGoogle Scholar
  26. [26]
    Sun, H.; Lian, Y. B.; Yang, C.; Xiong, L. K.; Qi, P. W.; Mu, Q. Q.; Zhao, X. H.; Guo, J.; Deng, Z.; Peng, Y. A hierarchical nickel-carbon structure templated by metal-organic frameworks for efficient overall water splitting. Energy Environ. Sci. 2018, 11, 2363–2371.CrossRefGoogle Scholar
  27. [27]
    Gascon, J.; Aktay, U.; Hernandez-Alonso, M. D.; van Klink, G. P. M.; Kapteijn, F. Amino-based metal-organic frameworks as stable, highly active basic catalysts. J. Catal. 2009, 261, 75–87.CrossRefGoogle Scholar
  28. [28]
    Shen, K.; Zhang, L.; Chen, X. D.; Liu, L. M.; Zhang, D. L.; Han, Y.; Chen, J. Y.; Long, J. L.; Luque, R.; Li, Y. W. et al. Ordered macro-microporous metal-organic framework single crystals. Science 2018, 359, 206–210.CrossRefGoogle Scholar
  29. [29]
    Panchenko, V. N.; Matrosova, M. M.; Jeon, J.; Jun, J. W.; Timofeeva, M. N.; Jhung, S. H. Catalytic behavior of metal-organic frameworks in the Knoevenagel condensation reaction. J. Catal. 2014, 316, 251–259.CrossRefGoogle Scholar
  30. [30]
    Opanasenko, M.; Dhakshinamoorthy, A.; Shamzhy, M.; Nachtigall, P.; Horácek, M.; Garcia, H; Cejka, J. Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catal. Sci. Technol. 2013, 3, 500–507.CrossRefGoogle Scholar
  31. [31]
    Almáši, M.; Zelenák, V.; Opanasenko, M.; Císarová, I. Ce(III) and Lu(III) metal-organic frameworks with Lewis acid metal sites: Preparation, sorption properties and catalytic activity in Knoevenagel condensation. Catal. Today 2015, 243, 184–194.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaofei Zhang
    • 1
    • 2
  • Lin Chang
    • 2
  • Zhongjie Yang
    • 2
  • Yanan Shi
    • 2
  • Chang Long
    • 1
    • 2
  • Jianyu Han
    • 2
  • Binhao Zhang
    • 2
  • Xueying Qiu
    • 2
  • Guodong Li
    • 2
    Email author
  • Zhiyong Tang
    • 1
    • 2
    Email author
  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina

Personalised recommendations