Nano Research

, Volume 12, Issue 2, pp 413–420 | Cite as

SERS-based lateral flow immunoassay of troponin I by using gap-enhanced Raman tags

  • Boris N. KhlebtsovEmail author
  • Daniil N. Bratashov
  • Nadezhda A. Byzova
  • Boris B. Dzantiev
  • Nikolai G. KhlebtsovEmail author
Research Article


The lateral flow immunoassay (LFIA) has emerged as a powerful tool for rapid screening owing to its simplicity and flexibility for detection of various biomarkers. However, conventional LFIA strips have several disadvantages, including limits in quantitative analysis and low sensitivity. Here we developed a novel surface-enhanced Raman scattering LFIA based on nonspherical gap-enhanced Raman tags (GERTs), with Raman molecules (RMs) embedded in a 1-nm gap between Au nanorod core and Au shell. Such tags have a strong and uniform SERS response, an order of magnitude higher than that of other common SERS tags such as Au nanorods, nanostars, Au nanoshells with surface-adsorbed RMs, or spherical GERTs with embedded RMs. The feasibility of the tags was demonstrated by the semiquantitative and sensitive detection of the heart disease biomarker cardiac troponin I (cTnI). GERTs were conjugated with monoclonal antibodies and used for LFIA in the same way as ordinary functionalized colloidal gold. The presence of the target antigen, cTnI, was identified by Raman microscopy mapping of the test zone. With the SERS-based LFIA, the limit of cTnI detection was about 0.1 ng/mL. This value is within the diagnostic range of cTnI in the blood serum of patients with heart infarction and is 30 times lower than that of the colorimetric LFIA test using the same antibodies and either GERTs or colloidal gold as labels.


surface-enhanced Raman scattering (SERS) lateral flow immunoassay Au core/shell nanorods gap-enhanced Raman tags cardiac Troponin I 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work on the synthesis and characterization of GERTs and on the development of SERS-based LFIA was supported by the Russian Scientific Foundation (No. 18-14-00016). Synthesis of labeled antibodies and studies of immune interactions in LFIA systems were supported by the Russian Foundation for Basic Research (No. 18-08-01397). BNK was supported by program No. 32 of the Presidium of the Russian Academy of Sciences (“Nanostructures: physics, chemistry, biology and basic techniques”). We thank D. N. Tychinin for his help in the preparation of the manuscript.

Supplementary material

12274_2018_2232_MOESM1_ESM.pdf (13.3 mb)
SERS-based lateral flow immunoassay of troponin I by using gapenhanced Raman tags


  1. [1]
    Parolo, C.; Merkoci, A. Paper-based nanobiosensors for diagnostics. Chem. Soc. Rev. 2013, 42, 450–457.CrossRefGoogle Scholar
  2. [2]
    Dzantiev, B. B.; Byzova, N. A.; Urusov A. E.; Zherdev, A. V. Immunochromatographic methods in food analysis. TrAC Trends Anal. Chem. 2014, 55, 81–93.CrossRefGoogle Scholar
  3. [3]
    Koczula, K. M.; Gallotta, A. Lateral flow assays. Essays Biochem. 2016, 60, 111–120.CrossRefGoogle Scholar
  4. [4]
    de Puig, H.; Bosch, I.; Gehrke, L.; Hamad-Schifferli, K. Challenges of the nano–bio interface in lateral flow and dipstick immunoassays. Trends Biotechnol. 2017, 35, 1169–1180.CrossRefGoogle Scholar
  5. [5]
    Mak, W. C.; Beni, V.; Turner, A. P. F. Lateral-flow technology: From visual to instrumental. TrAC Trends Anal. Chem. 2016, 79, 297–305.CrossRefGoogle Scholar
  6. [6]
    Bahadir, E. B.; Sezgintürk, M. K. Lateral flow assays: Principles, designs and labels. TrAC Trends Anal. Chem. 2016, 82, 286–306.CrossRefGoogle Scholar
  7. [7]
    Quesada-González, D.; Merkoçi, A. Nanoparticle-based lateral flow biosensors. Biosens. Bioelectron. 2015; 73, 47–63.CrossRefGoogle Scholar
  8. [8]
    Raeisossadat, M. J.; Danesh, N. M.; Borna, F.; Gholamzad, M.; Ramezani, M.; Abnous, K.; Taghdisi, S. M. Lateral flow based immunobiosensors for detection of food contaminants. Biosens. Bioelectron. 2016, 86, 235–2466.CrossRefGoogle Scholar
  9. [9]
    Dykman, L.; Khlebtsov, N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 2012, 41, 2256–2282.CrossRefGoogle Scholar
  10. [10]
    Wang, P. L.; Lin, Z. Y.; Su, X. O.; Tang, Z. Y. Application of Au based nanomaterials in analytical science. Nano Today 2017, 12, 64–97.CrossRefGoogle Scholar
  11. [11]
    Shan, S.; Lai, W. H.; Xiong, Y. H.; Wei, H.; Xu, H. Y. Novel strategies to enhance lateral flow immunoassay sensitivity for detecting foodborne pathogens. J. Agric. Food Chem. 2015, 63, 745–753.CrossRefGoogle Scholar
  12. [12]
    Zherdev, A. V., Dzantiev, B. B. Ways to reach lower detection limits in lateral flow immunoassays. In Rapid Test–Advances in Design, Format and Diagnostic Applications. Anfossi, L., Ed.; InTechOpen: London, 2018, pp 9–43.Google Scholar
  13. [13]
    Brangel, P.; Sobarzo, A.; Parolo, C.; Miller, B. S.; Howes, P. D.; Gelkop, S.; Lutwama, J. J.; Dye, J. M.; McKendry, R. A.; Lobel, L. et al. A serological point-of-care test for the detection of IgG antibodies against Ebola virus in human survivors. ACS Nano 2018, 12, 63–73.CrossRefGoogle Scholar
  14. [14]
    Feng, S.; Caire, R.; Cortazar, B.; Turan, M.; Wong, A.; Ozcan, A. Immunochromatographic diagnostic test analysis using Google glass. ACS Nano 2014, 8, 3069–3079.CrossRefGoogle Scholar
  15. [15]
    Goryacheva, I. Y.; Lenain, P.; De Saeger, S. Nanosized labels for rapid immunotests. TrAC Trends Anal. Chem. 2013, 46, 30–43.CrossRefGoogle Scholar
  16. [16]
    Gong, X. Q.; Cai, J.; Zhang, B.; Zhao, Q.; Piao, J. F.; Peng, W. P.; Gao, W. C.; Zhou, D. M.; Zhao, M.; Chang, J. A review of fluorescent signal-based lateral flow immunochromatographic strips. J. Mater. Chem. B 2017, 5, 5079–5091.CrossRefGoogle Scholar
  17. [17]
    Wang, Z. Y.; Zong, S. F.; Wu, L.; Zhu, D.; Cui, Y. P. SERS-activated platforms for immunoassay: Probes, encoding methods, and applications. Chem. Rev. 2017, 117, 7910–7963.CrossRefGoogle Scholar
  18. [18]
    Mir-Simon, B.; Reche-Perez, I.; Guerrini, L.; Pazos-Perez, N.; Alvarez- Puebla, R. A. Universal one-pot and scalable synthesis of SERS encoded nanoparticles. Chem. Mater. 2015, 27, 950–958.CrossRefGoogle Scholar
  19. [19]
    Samanta, A.; Maiti, K. K.; Soh, K. S.; Liao, X.; Vendrell, M.; Dinish, U. S.; Yun, S. W.; Bhuvaneswari, R.; Kim, H.; Rautela, S. et al. Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection. Angew. Chem., Int. Ed. 2011, 50, 6089–6092.CrossRefGoogle Scholar
  20. [20]
    Khlebtsov, N. G.; Khlebtsov, B. N. Optimal design of gold nanomatryoshkas with embedded Raman reporters. J. Quant. Spectrosc. Radiat. Transfer 2017, 190, 89–102.CrossRefGoogle Scholar
  21. [21]
    Wang, Y. Q.; Yan, B.; Chen, L. X. SERS tags: Novel optical nanoprobes for bioanalysis. Chem. Rev. 2013, 113, 1391–1428.CrossRefGoogle Scholar
  22. [22]
    Fu, X. L.; Cheng, Z. Y.; Yu, J. M.; Choo, P.; Chen, L. X.; Choo, J. A SERSbased lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA. Biosens. Bioelectron. 2016, 78, 530–537.CrossRefGoogle Scholar
  23. [23]
    Wang, X. K.; Choi, N.; Cheng, Z. Y.; Ko, J.; Chen, L. X.; Choo, J. Simultaneous detection of dual nucleic acids using a SERS-based lateral flow assay biosensor. Anal. Chem. 2017, 89, 1163–1169.CrossRefGoogle Scholar
  24. [24]
    Choi, S.; Hwang, J.; Lee, S.; Lim, D. W.; Joo, H.; Choo, J. Quantitative analysis of thyroid-stimulating hormone (TSH) using SERS-based lateral flow immunoassay. Sens. Actuat. B Chem. 2017, 240, 358–364.CrossRefGoogle Scholar
  25. [25]
    Park, H. J.; Yang, S. C.; Choo J. Early diagnosis of influenza virus A using surface-enhanced Raman scattering-based lateral flow assay. Bull. Korean Chem. Soc. 2016, 37, 2019–2024.CrossRefGoogle Scholar
  26. [26]
    Liu, H. B.; Du, X. J.; Zang, Y. X.; Li, P.; Wang, S. A SERS-based lateral flow strip biosensor for simultaneous detection of Listeria monocytogenes and Salmonella enterica serotype enteritidis. J. Agric. Food Chem. 2017, 65, 10290–10299.CrossRefGoogle Scholar
  27. [27]
    Wang, J.; Zhang, L.; Huang, Y.; Dandapat, A.; Dai, L.; Zhang, G.; Lu, X.; Zhang, J.; Lai, W.; Chen, T.; Hollow Au-Ag nanoparticles labeled immunochromatography strip for highly sensitive detection of clenbuterol. Sci. Rep. 2017, 7, 41419.CrossRefGoogle Scholar
  28. [28]
    Maneeprakorn, W.; Bamrungsap, S.; Apiwat, C.; Wiriyachaiporn, N. Surfaceenhanced Raman scattering based lateral flow immunochromatographic assay for sensitive influenza detection. RSC Adv. 2016, 6, 112079–11208.CrossRefGoogle Scholar
  29. [29]
    Hwang, J.; Lee, S.; Choo, J. Application of a SERS-based lateral flow immunoassay strip for the rapid and sensitive detection of staphylococcal enterotoxin B. Nanoscale 2016, 8, 11418–11425.CrossRefGoogle Scholar
  30. [30]
    Lim, D. K.; Jeon, K. S.; Hwang, J. H.; Kim, H.; Kwon, S.; Suh Y. D.; Nam J. M. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol. 2011, 6, 452–460.CrossRefGoogle Scholar
  31. [31]
    Gandra, N.; Singamaneni, S. Bilayered Raman-intense gold nanostructures with hidden tags (BRIGHTs) for high-resolution bioimaging. Adv. Mater. 2013, 25, 1022–1027.CrossRefGoogle Scholar
  32. [32]
    Gandra, N.; Hendargo, H. C.; Norton, S. J.; Fales, A. M.; Palmer, G. M.; Vo-Dinh, T. Tunable and amplified Raman gold nanoprobes for effective tracking (TARGET): In vivo sensing and imaging. Nanoscale 2016, 8, 8486–8494.CrossRefGoogle Scholar
  33. [33]
    Khlebtsov, B.; Khanadeev, V., Khlebtsov, N. Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods. Nano Res. 2016, 9, 2303–2318.CrossRefGoogle Scholar
  34. [34]
    Khlebtsov, B. N.; Khlebtsov, N. G. Surface morphology of a gold core controls the formation of hollow or bridged nanogaps in plasmonic nanomatryoshkas and their SERS responses. J. Phys. Chem. C 2016, 120, 15385–15394.CrossRefGoogle Scholar
  35. [35]
    Lin, L.; Gu, H. C.; Ye, J. Plasmonic multi-shell nanomatryoshka particles as highly tunable SERS tags with built-in reporters. Chem. Commun. 2015, 51, 17740–17743.CrossRefGoogle Scholar
  36. [36]
    Kang, J. W.; So, P. T. C.; Dasari, R. R.; Lim, D. K. High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap. Nano Lett. 2015, 15, 1766–1772.CrossRefGoogle Scholar
  37. [37]
    Zhang, Y. Q.; Qiu, Y. Y.; Lin, L.; Gu, H. C.; Xiao, Z. Y.; Ye, J. Ultraphotostable mesoporous silica-coated gap-enhanced Raman tags (GERTs) for highspeed bioimaging. ACS Appl. Mater. Interfaces 2017, 9, 3995–4005.CrossRefGoogle Scholar
  38. [38]
    Bao, Z. Z.; Zhang, Y. Q.; Tan, Z. Y.; Yin, X.; Di, W.; Ye, J. Gap-enhanced Raman tags for high-contrast sentinel lymph node imaging. Biomaterials 2018, 163, 105–115.CrossRefGoogle Scholar
  39. [39]
    Kim, M.; Ko, S. M.; Kim, J. M.; Son, J.; Lee, C.; Rhim, W. K.; Nam, J. M. Dealloyed intra-nanogap particles with highly robust, quantifiable surfaceenhanced Raman scattering signals for biosensing and bioimaging applications. ACS Cent. Sci. 2018, 4, 277–287.CrossRefGoogle Scholar
  40. [40]
    Khlebtsov, B.; Pylaev, T.; Khanadeev, V.; Bratashov, D.; Khlebtsov N. Quantitative and multiplex dot-immunoassay using gap enhanced Raman tags. RSC Adv. 2017, 7, 40834–40841.CrossRefGoogle Scholar
  41. [41]
    Zhang, D.; Huang, L.; Liu, B.; Ni, H. B.; Sun, L. D.; Su, E. B.; Chen, H. Y.; Gu, Z. Z.; Zhao, X. W. Quantitative and ultrasensitive detection of multiplex cardiac biomarkers in lateral flow assay with core-shell SERS nanotags. Biosens. Bioelectron. 2018, 106, 204–211.CrossRefGoogle Scholar
  42. [42]
    Bruins Slot, M. H. E.; van der Heijde, G. J. M. G.; Stelpstra, S. D.; Hoes, A. W.; Rutten, F. H. Point-of-care tests in suspected acute myocardial infarction: A systematic review. Int. J. Cardiol. 2013, 168, 5355–5362.CrossRefGoogle Scholar
  43. [43]
    Soetkamp, D.; Raedschelders, K.; Mastali, M.; Sobhani, K.; Bairey Merz, C. N.; Van Eyk, J. The continuing evolution of cardiac troponin I biomarker analysis: From protein to proteoform. Expert Rev. Proteomics 2007, 14, 973–986.CrossRefGoogle Scholar
  44. [44]
    Park, K. C.; Gaze, D. C.; Collinson, P. O.; Marber, M. S. Cardiac troponins: From myocardial infarction to chronic disease. Cardiovasc. Res. 2017, 113, 1708–1718.CrossRefGoogle Scholar
  45. [45]
    Han, X.; Li, S. H.; Peng, Z. L.; Othman, A. M.; Leblanc, R. Recent development of cardiac troponin I detection. ACS Sens. 2016, 1, 106–114.CrossRefGoogle Scholar
  46. [46]
    Segraves, J. M.; Frishman, W. H. Highly sensitive cardiac troponin assays: A comprehensive review of their clinical utility. Cardiol. Rev. 2015, 23, 282–289.Google Scholar
  47. [47]
    Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.CrossRefGoogle Scholar
  48. [48]
    Khlebtsov, B.; Khanadeev, V.; Pylaev, T.; Khlebtsov, N. A new T-matrix solvable model for nanorods: TEM-based ensemble simulations supported by experiments. J. Phys. Chem. C 2011, 115, 6317–6323.CrossRefGoogle Scholar
  49. [49]
    Khlebtsov, B.; Panfilova, E.; Khanadeev, V.; Khlebtsov, N. Improved sizetunable synthesis and SERS properties of Au nanostars. J. Nanopart. Res. 2014, 16, 2623.CrossRefGoogle Scholar
  50. [50]
    Khanadeev, V. A.; Khlebtsov, B. N.; Khlebtsov N. G. Optical properties of gold nanoshells on monodisperse silica cores: Experiment and simulations. J. Quant. Spectrosc. Radiat. Transfer 2017, 187, 1–9.CrossRefGoogle Scholar
  51. [51]
    Byzova, N. A.; Safenkova, I. V.; Chirkov, S. N.; Zherdev, A. V.; Blintsov, A. N.; Dzantiev, B. B.; Atabekov, I. G. Development of immunochromatographic test systems for express detection of plant viruses. Appl. Biochem. Microbiol. 2009, 45, 204–209.CrossRefGoogle Scholar
  52. [52]
    Byzova, N. A.; Zherdev, A. V.; Vengerov, Y. Y.; Starovoitova, T. A.; Dzantiev, B. B. A triple immunochromatographic test for simultaneous determination of cardiac troponin I, fatty acid binding protein, and C-reactive protein biomarkers. Microchim. Acta 2017, 184, 463–471.CrossRefGoogle Scholar
  53. [53]
    Khlebtsov, B. N.; Khanadeev, V. A.; Burov, A. M.; Khlebtsov, N. G. A new type of SERS tags: Au@Ag core/shell nanorods with embedded aromatic molecules. Nanotechnol. Russia 2017, 12, 495–507.CrossRefGoogle Scholar
  54. [54]
    Lin, L.; Zapata, M.; Xiong, M.; Liu, Z. H.; Wang, S. S.; Xu, H.; Borisov, A. G.; Gu, H. C.; Nordlander, P.; Aizpurua, J.; Ye, J. Nanooptics of plasmonic nanomatryoshkas: Shrinking the size of a core-shell junction to subnanometer. Nano Lett. 2015, 15, 6419–6428.CrossRefGoogle Scholar
  55. [55]
    Lin, L.; Liu, Z. H.; Li, X. Y.; Gu, H. C.; Ye, J. Quantifying the reflective index of nanometer-thick thiolated molecular layers on nanoparticles. Nanoscale 2017, 9, 2213–2218.CrossRefGoogle Scholar
  56. [56]
    Khlebtsov, B. N.; Khanadeev, V. A.; Ye, J.; Sukhorukov, G. B.; Khlebtsov, N. G. Overgrowth of gold nanorods by using a binary surfactant mixture. Langmuir 2014, 30, 1696–1703.CrossRefGoogle Scholar
  57. [57]
    Abdelsalam, M. E. Surface enhanced Raman scattering of aromatic thiols adsorbed on nanostructured gold surfaces. Cent. Eur. J. Chem. 2009, 7, 446–453.Google Scholar
  58. [58]
    Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803.CrossRefGoogle Scholar
  59. [59]
    Khalid, M.; Sala, F. D.; Ciraci, C. Optical properties of plasmonic core-shell nanomatryoshkas: A quantum hydrodynamic analysis. Opt. Express 2018, 26, 17322–17334.CrossRefGoogle Scholar
  60. [60]
    Lerch, S.; Reinhard, B. M. Effect of interstitial palladium on plasmon-driven charge transfer in nanoparticle dimers. Nat. Commun. 2018, 9, 1608.CrossRefGoogle Scholar
  61. [61]
    Wang, S. S.; Liu, Z. H.; Bartic, C.; Xu, H.; Ye J. Improving SERS uniformity by isolating hot spots in gold rod-in-shell nanoparticles. J. Nanopart. Res. 2016, 18, 246.CrossRefGoogle Scholar
  62. [62]
    Skadtchenko, B. O.; Aroca, R. Surface-enhanced Raman scattering of p-nitrothiophenol: Molecular vibrations of its silver salt and the surface complex formed on silver islands and colloids. Spectrochim. Acta Part A Mol. Biomol. Spectros. 2001, 57, 1009–1016.CrossRefGoogle Scholar
  63. [63]
    Futamata, M. Surface-plasmon-polariton-enhanced Raman scattering from self-assembled monolayers of p-nitrothiophenol and p-aminothiophenol on silver. J. Phys. Chem. 1995, 99, 11901–11908.CrossRefGoogle Scholar
  64. [64]
    Teguh, J. S.; Liu, F.; Xing, B.; Yeow, E. K. L. Surface-enhanced Raman scattering (SERS) of nitrothiophenol isomers chemisorbed on TiO2. Chem. Asian J. 2012, 7, 975–981.CrossRefGoogle Scholar
  65. [65]
    Bai, T. T.; Wang, M.; Cao, M.; Zhang, J.; Zhang, K. Z.; Zhou, P.; Liu, Z. X.; Liu, Y.; Guo, Z. R.; Lu, X. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing. Anal. Bioanal. Chem. 2018, 410, 2291–2303.CrossRefGoogle Scholar
  66. [66]
    Serebrennikova, K.; Samsonova, J.; Osipov, A. Hierarchical nanogold labels to improve the sensitivity of lateral flow immunoassay. Nano-Micro Lett. 2018, 10, 24.CrossRefGoogle Scholar
  67. [67]
    Juntunen, E.; Arppe, R.; Kalliomaki, L.; Salminen, T.; Talha, S. M.; Myyryläinen, T.; Soukka, T.; Pettersson, K. Effects of blood sample anticoagulants on lateral flow assays using luminescent photon-upconverting and Eu(III) nanoparticle reporters. Anal. Biochem. 2016, 492, 13–20.CrossRefGoogle Scholar
  68. [68]
    Cho, J. H.; Kim, M. H.; Mok, R. S.; Jeon, J. W.; Lim, G. S.; Chai, C. Y.; Paek, S. H. Two-dimensional paper chromatography-based fluorescent immunosensor for detecting acute myocardial infarction markers. J. Chromatogr. B 2014, 967, 139–146.CrossRefGoogle Scholar
  69. [69]
    Xu, Q. F.; Xu, H.; Gu, H. C.; Li, J. B.; Wang, Y. Y.; Wei, M. Development of lateral flow immunoassay system based on superparamagnetic nanobeads as labels for rapid quantitative detection of cardiac troponin I. Mat. Sci. Eng. C 2009, 29, 702–707.CrossRefGoogle Scholar
  70. [70]
    Choi, D. H.; Lee, S. K.; Oh, Y. K.; Bae, B. W.; Lee, S. D.; Kim, S.; Shin, Y. B.; Kim, M. G. A dual gold nanoparticle conjugate-based lateral flow assay (LFA) method for the analysis of troponin I. Biosens. Bioelectron. 2010, 25, 1999–2002.CrossRefGoogle Scholar
  71. [71]
    Ryu, Y.; Jin, Z. W.; Kang, M. S.; Kim, H. S. Increase in the detection sensitivity of a lateral flow assay for a cardiac marker by oriented immobilization of antibody. BioChip J. 2011, 5, 193–198.CrossRefGoogle Scholar
  72. [72]
    Zhu, J. M.; Zou, N. L.; Zhu, D. N.; Wang, J.; Jin, Q. H.; Zhao, J. L.; Mao, H. J. Simultaneous detection of high-sensitivity cardiac troponin I and myoglobin by modified sandwich lateral flow immunoassay: Proof of principle. Clin. Chem. 2011, 57, 1732–1738.CrossRefGoogle Scholar
  73. [73]
    Cai, Y. X.; Kang, K. R.; Li, Q. R.; Wang, Y.; He, X. W. Rapid and sensitive detection of cardiac troponin I for point-of-care tests based on red fluorescent microspheres. Molecules 2018, 23, 1102.CrossRefGoogle Scholar
  74. [74]
    Akanda, M. R.; Joung, H. A.; Tamilavan, V.; Park, S.; Kim, S.; Hyun, M. H.; Kim, M. G.; Yang, H. An interference-free and rapid electrochemical lateral-flow immunoassay for one-step ultrasensitive detection with serum. Analyst 2014, 139, 1420–1425.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Boris N. Khlebtsov
    • 1
    • 2
    Email author
  • Daniil N. Bratashov
    • 2
  • Nadezhda A. Byzova
    • 3
  • Boris B. Dzantiev
    • 3
  • Nikolai G. Khlebtsov
    • 1
    • 2
    Email author
  1. 1.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of SciencesSaratovRussia
  2. 2.Saratov State UniversitySaratovRussia
  3. 3.A. N. Bach Institute of Biochemistry, Research Centre of BiotechnologyRussian Academy of SciencesMoscowRussia

Personalised recommendations