Nano Research

, Volume 12, Issue 2, pp 389–396 | Cite as

A laterally sensitive colloidal probe for accurately measuring nanoscale adhesion of textured surfaces

  • Sören Zimmermann
  • Waldemar Klauser
  • James Mead
  • Shiliang Wang
  • Han Huang
  • Sergej Fatikow
Research Article


Adhesion assessment of nanoscale contacts is a critical capability for the development of future nanoelectromechanical systems and nanobiotechnology devices. However, experimental approaches to investigate interactions on micro- and nanostructured surfaces have predominantly been restricted to capturing adhesion force in the normal direction. This provides limited information about the multidimensional nature of surface texture and related interaction mechanisms. Here the design, fabrication, and application of a unique atomic force microscope probe is presented that consists of a focused ion beam-milled cantilever decorated with a colloidal particle. The probe is specifically developed for characterizing textured surfaces with lateral force feedback. Pull-off tests that map the adhesive interaction in microscale cavities are performed to examine the capability of the probe. Normal and lateral adhesive forces during nanoscale contact are accurately obtained and the adhesion energy of the contact interface is thus determined. An in-depth understanding of the effects of surface texture and the correlation of adhesion and friction is demonstrated. The proposed methodology enables dedicated investigations of interfacial interaction on various non-planar surfaces. It can be used for understanding the complex interplay of adhesion, contact, and friction forces at nanoscale, which may facilitate significant advances in challenging research areas such as fibrillar adhesion.


nanoscale adhesion friction atomic force microscope colloidal probe lateral sensitivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work leading to this publication was supported by the German Academic Exchange Service (DAAD) with funds from the German Federal Ministry of Education and Research (BMBF) and the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement No. 605728 (P.R.I.M.E.–Postdoctoral Researchers International Mobility Experience). J. M., S. W., and H. H. would like to acknowledge the financial support from Australia Research Council (ARC) through Discovery Projects Program.

Supplementary material

12274_2018_2228_MOESM1_ESM.pdf (1.1 mb)
A laterally sensitive colloidal probe for accurately measuring nanoscale adhesion of textured surfaces


  1. [1]
    Potthoff, E.; Franco, D.; D’Alessandro, V.; Starck, C.; Falk, V.; Zambelli, T.; Vorholt, J. A.; Poulikakos, D.; Ferrari, A. Toward a rational design of surface textures promoting endothelialization. Nano Lett. 2014, 14, 1069–1079.CrossRefGoogle Scholar
  2. [2]
    Linklater, D. P.; Nguyen, H. K. D.; Bhadra, C. M.; Juodkazis, S.; Ivanova, E. P. Influence of nanoscale topology on bactericidal efficiency of black silicon surfaces. Nanotechnology 2017, 28, 245301.CrossRefGoogle Scholar
  3. [3]
    Komvopoulos, K. Adhesion and friction forces in microelectromechanical systems: Mechanisms, measurement, surface modification techniques, and adhesion theory. J. Adhes. Sci. Technol. 2003, 17, 477–517.CrossRefGoogle Scholar
  4. [4]
    Zimmermann, S.; Specht, U.; Spieß, L.; Romanus, H.; Krischok, S.; Himmerlich, M.; Ihde, J. Improved adhesion at titanium surfaces via laserinduced surface oxidation and roughening. Mater. Sci. Eng. A 2012, 558, 755–760.CrossRefGoogle Scholar
  5. [5]
    Simpson, J. T.; Scott, R. H.; Aytug, T. Superhydrophobic materials and coatings: A review. Rep. Prog. Phys. 2015, 78, 086501.CrossRefGoogle Scholar
  6. [6]
    Kim, T.; Park, J.; Sohn, J.; Cho, D.; Jeon, S. Bioinspired, highly stretchable, and conductive dry adhesives based on 1D–2D hybrid carbon nanocomposites for all-in-one ECG electrodes. ACS Nano 2016, 10, 4770–4778.CrossRefGoogle Scholar
  7. [7]
    Morikawa, K.; Tsukahara, T. Fabrication of hydrophobic nanostructured surfaces for microfluidic control. Anal. Sci. 2016, 32, 79–83.CrossRefGoogle Scholar
  8. [8]
    Figueiredo, L. J. Application of nanocarbon materials to catalysis. In Nanotechnology in Catalysis: Applications in the Chemical Industry, Energy Development, and Environment Protection. van de Voorde, M.; Sels, B.; Eds., Wiley-Blackwell: Weinheim, 2017; pp 37–56.CrossRefGoogle Scholar
  9. [9]
    Drelich, J.; Mittal, K. L. Atomic Force Microscopy in Adhesion Studies; VSP: Leiden, Boston, 2005.CrossRefGoogle Scholar
  10. [10]
    Cappella, B.; Dietler, G. Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 1999, 34, 1–3, 5–104.Google Scholar
  11. [11]
    Ralston, J.; Larson, I.; Rutland, M. W.; Feiler, A. A.; Kleijn, M. Atomic force microscopy and direct surface force measurements. Pure Appl. Chem. 2005, 77, 2149–2170.CrossRefGoogle Scholar
  12. [12]
    Butt, H. J. Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys. J. 1991, 60, 1438–1444.CrossRefGoogle Scholar
  13. [13]
    Ducker, W. A.; Senden, T. J.; Pashley, R. M. Direct measurement of colloidal forces using an atomic force microscope. Nature 1991, 353, 239–241.CrossRefGoogle Scholar
  14. [14]
    Kappl, M.; Butt, H. J. The colloidal probe technique and its application to adhesion force measurements. Part. Syst. Charact. 2002, 19, 129–143.CrossRefGoogle Scholar
  15. [15]
    Jiang, T.; Zhu, Y. Measuring graphene adhesion using atomic force microscopy with a microsphere tip. Nanoscale 2015, 7, 10760–10766.CrossRefGoogle Scholar
  16. [16]
    Liu, D. L.; Martin, J.; Burnham, N. A. Which fractal parameter contributes most to adhesion? J. Adhes. Sci. Technol. 2010, 24, 2383–2396.CrossRefGoogle Scholar
  17. [17]
    Kim, J. H.; Yuk, Y.; Joo, H. S.; Cheon, J. Y.; Choi, H. S.; Joo, S. H.; Park, J. Y. Nanoscale adhesion between Pt nanoparticles and carbon support and its influence on the durability of fuel cells. Curr. Appl. Phys. 2015, 15, S108–S114.CrossRefGoogle Scholar
  18. [18]
    Yang, S.; Zhang, H.; Nosonovsky, M.; Chung, K. H. Effects of contact geometry on pull-off force measurements with a colloidal probe. Langmuir 2008, 24, 743–748.CrossRefGoogle Scholar
  19. [19]
    Ramakrishna, S. N.; Clasohm, L. Y.; Rao, A.; Spencer, N. D. Controlling adhesion force by means of nanoscale surface roughness. Langmuir 2011, 27, 9972–9978.CrossRefGoogle Scholar
  20. [20]
    Laitinen, O.; Bauer, K.; Niinimäki, J.; Peuker, U. A. Validity of the Rumpf and the Rabinovich adhesion force models for alumina substrates with nanoscale roughness. Powder Technol. 2013, 246, 545–552.CrossRefGoogle Scholar
  21. [21]
    Yang, S.; Zhang, H.; Hsu, S. M. Correction of random surface roughness on colloidal probes in measuring adhesion. Langmuir 2007, 23, 1195–1202.CrossRefGoogle Scholar
  22. [22]
    Chai, Z. M.; Liu, Y. H.; Lu, X. C.; He, D. N. Reducing adhesion force by means of atomic layer deposition of ZnO films with nanoscale surface roughness. ACS Appl. Mater. Interfaces 2014, 6, 3325–3330.CrossRefGoogle Scholar
  23. [23]
    Rumpf, H. Particle Technology; Chapman and Hall: London, 1990.CrossRefGoogle Scholar
  24. [24]
    Rabinovich, Y. I.; Adler, J. J.; Ata, A.; Singh, R. K.; Moudgil, B. M. Adhesion between nanoscale rough surfaces: I. Role of asperity geometry. J. Colloid Interface Sci. 2000, 232, 10–16.CrossRefGoogle Scholar
  25. [25]
    Rabinovich, Y. I.; Adler, J. J.; Ata, A.; Singh, R. K.; Moudgil, B. M. Adhesion between nanoscale rough surfaces: II. Measurement and comparison with theory. J. Colloid Interface Sci. 2000, 232, 17–24.CrossRefGoogle Scholar
  26. [26]
    LaMarche, C. Q.; Leadley, S.; Liu, P. Y.; Kellogg, K. M.; Hrenya, C. M. Method of quantifying surface roughness for accurate adhesive force predictions. Chem. Eng. Sci. 2017, 158, 140–153.CrossRefGoogle Scholar
  27. [27]
    Cooper, K.; Ohler, N.; Gupta, A.; Beaudoin, S. Analysis of contact interactions between a rough deformable colloid and a smooth substrate. J. Colloid Interface Sci. 2000, 222, 63–74.CrossRefGoogle Scholar
  28. [28]
    Jacobs, T. D. B.; Ryan, K. E.; Keating, P. L.; Grierson, D. S.; Lefever, J. A.; Turner, K. T.; Harrison, J. A.; Carpick, R. W. The effect of atomic-scale roughness on the adhesion of nanoscale asperities: A combined simulation and experimental investigation. Tribol. Lett. 2013, 50, 81–93.CrossRefGoogle Scholar
  29. [29]
    Le Goïc, G.; Bigerelle, M.; Samper, S.; Favrelière, H.; Pillet, M. Multiscale roughness analysis of engineering surfaces: A comparison of methods for the investigation of functional correlations. Mech. Syst. Signal Process. 2016, 66–67, 437–457.CrossRefGoogle Scholar
  30. [30]
    Tormoen, G. W.; Drelich, J. Deformation of soft colloidal probes during AFM pull-off force measurements: Elimination of nano-roughness effects. J. Adhes. Sci. Technol. 2005, 19, 181–198.CrossRefGoogle Scholar
  31. [31]
    Escobar, J. V.; Garza, C.; Castillo, R. Measuring adhesion on rough surfaces using atomic force microscopy with a liquid probe. Beilstein J. Nanotechnol. 2017, 8, 813–825.CrossRefGoogle Scholar
  32. [32]
    Chung, K. H.; Pratt, J. R.; Reitsma, M. G. Lateral force calibration: Accurate procedures for colloidal probe friction measurements in atomic force microscopy. Langmuir 2010, 26, 1386–1394.CrossRefGoogle Scholar
  33. [33]
    Cannara, R. J.; Eglin, M.; Carpick, R. W. Lateral force calibration in atomic force microscopy: A new lateral force calibration method and general guidelines for optimization. Rev. Sci. Instrum. 2006, 77, 53701.CrossRefGoogle Scholar
  34. [34]
    Sader, J. E.; Green, C. P. In-plane deformation of cantilever plates with applications to lateral force microscopy. Rev. Sci. Instrum. 2004, 75, 878–883.CrossRefGoogle Scholar
  35. [35]
    Meyer, G.; Amer, N. M. Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope. Appl. Phys. Lett. 1990, 57, 2089–2091.CrossRefGoogle Scholar
  36. [36]
    Schmutz, J. E.; Schäfer, M. M.; Hölscher, H. Colloid probes with increased tip height for higher sensitivity in friction force microscopy and less cantilever damping in dynamic force microscopy. Rev. Sci. Instrum. 2008, 79, 026103.CrossRefGoogle Scholar
  37. [37]
    Zimmermann, S.; Tiemerding, T.; Fatikow, S. Automated robotic manipulation of individual colloidal particles using vision-based control. IEEE/ASME Trans. Mechatron. 2015, 20, 2031–2038.CrossRefGoogle Scholar
  38. [38]
    Vogt, J.; Zimmermann, S.; Huck, C.; Tzschoppe, M.; Neubrech, F.; Fatikow, S.; Pucci, A. Chemical identification of individual fine dust particles with resonant plasmonic enhancement of nanoslits in the infrared. ACS Photonics 2017, 4, 560–566.CrossRefGoogle Scholar
  39. [39]
    Zimmermann, S.; Tiemerding, T.; Haenssler, O. C.; Fatikow, S. Automated robotic manipulation of individual sub-micro particles using a dual probe setup inside the scanning electron microscope. In Proceeding of 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, USA, 2015, pp 950–955.CrossRefGoogle Scholar
  40. [40]
    Hutter, J. L.; Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 1993, 64, 1868–1873.CrossRefGoogle Scholar
  41. [41]
    Johnson, K. L.; Kendall, K.; Roberts, A. D. Surface energy and the contact of elastic solids. Proc. Roy. Soc. A: Math. Phys. Sci. 1971, 324, 301–313.CrossRefGoogle Scholar
  42. [42]
    Derjaguin, B. V.; Muller, V. M.; Toporov, Y. P. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 1975, 53, 314–326.CrossRefGoogle Scholar
  43. [43]
    Carpick, R. W.; Ogletree, D. F.; Salmeron, M. A general equation for fitting contact area and friction vs. load measurements. J. Colloid Interface Sci. 1999, 211, 395–400.CrossRefGoogle Scholar
  44. [44]
    Grierson, D. S.; Flater, E. E.; Carpick, R. W. Accounting for the JKR–DMT transition in adhesion and friction measurements with atomic force microscopy. J. Adhes. Sci. Technol. 2005, 19, 291–311.CrossRefGoogle Scholar
  45. [45]
    White, L. R. On the deryaguin approximation for the interaction of macrobodies. J. Colloid Interface Sci. 1983, 95, 286–288.CrossRefGoogle Scholar
  46. [46]
    Utke, I.; Hoffmann, P.; Melngailis, J. Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 2008, 26, 1197.CrossRefGoogle Scholar
  47. [47]
    Heim, L. O.; Blum, J.; Preuss, M.; Butt, H. J. Adhesion and friction forces between spherical micrometer-sized particles. Phys. Rev. Lett. 1999, 83, 3328–3331.CrossRefGoogle Scholar
  48. [48]
    Kimura, H.; Wada, K.; Senshu, H.; Kobayashi, H. Cohesion of amorphous silica spheres: Toward a better understanding of the coagulation growth of silicate dust aggregates. Astrophys. J. 2015, 812, 67.CrossRefGoogle Scholar
  49. [49]
    Mo, Y. F.; Turner, K. T.; Szlufarska, I. Friction laws at the nanoscale. Nature 2009, 457, 1116–1119.CrossRefGoogle Scholar
  50. [50]
    Craciun, A. D.; Gallani, J. L.; Rastei, M. V. Stochastic stick–slip nanoscale friction on oxide surfaces. Nanotechnology 2016, 27, 055402.CrossRefGoogle Scholar
  51. [51]
    Gauthier, M.; Chaillet, N.; Régnier, S.; Rougeot, P. Analysis of forces for micromanipulations in dry and liquid media. J. Micromechatron. 2006, 3, 389–413.CrossRefGoogle Scholar
  52. [52]
    Klauser, W.; Zimmermann, S.; Bartenwerfer, M.; Fatikow, S. Cubical photonic structures by means of ion beam assisted robotic assembly. In Proceedings of 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Sendai, Japan, 2016, pp 270–274.Google Scholar
  53. [53]
    Bishop, K. J. M.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 2009, 5, 1600–1630.CrossRefGoogle Scholar
  54. [54]
    Smith, A. M.; Callow, J. A. Biological Adhesives; Springer International Publishing: Cham, 2016.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sören Zimmermann
    • 1
    • 2
  • Waldemar Klauser
    • 1
  • James Mead
    • 2
  • Shiliang Wang
    • 2
    • 3
  • Han Huang
    • 2
  • Sergej Fatikow
    • 1
  1. 1.Department of Computing ScienceUniversity of OldenburgOldenburgGermany
  2. 2.School of Mechanical and Mining EngineeringThe University of QueenslandBrisbaneAustralia
  3. 3.School of Physics and ElectronicsCentral South UniversityChangshaChina

Personalised recommendations