Nano Research

, Volume 12, Issue 3, pp 471–487 | Cite as

Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications

  • Byung-Moon Jun
  • Sewoon Kim
  • Jiyong Heo
  • Chang Min Park
  • Namguk Her
  • Min Jang
  • Yi Huang
  • Jonghun HanEmail author
  • Yeomin YoonEmail author
Review Article


Energy and environmental issues presently attract a great deal of scientific attention. Recently, two-dimensional MXenes and MXene-based nanomaterials have attracted increasing interest because of their unique properties (e.g., remarkable safety, a very large interlayer spacing, environmental flexibility, a large surface area, and thermal conductivity). In 2011, multilayered MXenes (Ti3C2Tx, a new family of two-dimensional (2D) materials) produced by etching an A layer from a MAX phase of Ti3AlC2, were first described by researchers at Drexel University. The term “MXene” was coined to distinguish this new family of 2D materials from graphene, and applies to both the original MAX phases and MXenes fabricated from them. We present a comprehensive review of recent studies on energy and environmental applications of MXene and MXene-based nanomaterials, including energy conversion and storage, adsorption, membrane, photocatalysis, and antimicrobial. Future research needs are discussed briefly with current challenges that must be overcome before we completely understand the extraordinary properties of MXene and MXene-based nanomaterials.


MXenes MXene-based nanomaterials energy storage environment applications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the Korea Ministry of Environment, ‘GAIA Project, 2018002470005’ (Republic of Korea). This research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B04033506), and a grant (code 19IFIP-B088091-06) from Industrial Facilities & Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government (Republic of Korea).


  1. [1]
    Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.Google Scholar
  2. [2]
    Lubchenco, J. Entering the century of the environment: A new social contract for science. Science 1998, 279, 491–497.Google Scholar
  3. [3]
    Hoque, M. M.; Hannan, M. A.; Mohamed, A.; Ayob. A. Battery charge equalization controller in electric vehicle applications: A review. Renew. Sust. Energy Rev. 2017, 75, 1363–1385.Google Scholar
  4. [4]
    Telaretti, E.; Dusonchet, L. Stationary battery technologies in the U.S.: Development trends and prospects. Renew. Sust. Energy Rev. 2017, 75, 380–392.Google Scholar
  5. [5]
    Sun, S. J.; Liao, C.; Hafez, A. M.; Zhu, H. L.; Wu, S. P. Two-dimensional MXenes for energy storage. Chem. Eng. J. 2018, 338, 27–45.Google Scholar
  6. [6]
    Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.Google Scholar
  7. [7]
    Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.Google Scholar
  8. [8]
    Farha, O. K.; Yazaydın, A. Ö.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2010, 2, 944–948.Google Scholar
  9. [9]
    Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504.Google Scholar
  10. [10]
    Lukatskaya M. R.; Mashtalir, O.; Ren, C. E.; Dall’Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.Google Scholar
  11. [11]
    Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 2014, 516, 78–81.Google Scholar
  12. [12]
    Wu, S. P.; Xu, R.; Lu, M. J.; Ge, R. Y.; Iocozzia, J.; Han, C. P.; Jiang, B. B.; Lin, Z. Q. Graphene-containing nanomaterials for lithium-ion batteries. Adv. Energy Mater. 2015, 5, 1500400.Google Scholar
  13. [13]
    Wang, F.; Yang, C. H.; Duan, M.; Tang, Y.; Zhu, J. F. TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens. Bioelectron. 2015, 74, 1022–1028.Google Scholar
  14. [14]
    Levi, M. D.; Lukatskaya, M. R.; Sigalov, S.; Beidaghi, M.; Shpigel, N.; Daikhin, L.; Aurbach, D.; Barsoum, M. W.; Gogotsi, Y. Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements. Adv. Energy Mater. 2015, 5, 1400815Google Scholar
  15. [15]
    Heo, J.; Kim, H.; Her, N.; Lee, S.; Park, Y. G.; Yoon, Y. Natural organic matter removal in single-walled carbon nanotubes-ultrafiltration membrane systems. Desalination 2012, 298, 75–84.Google Scholar
  16. [16]
    Im, J. K.; Heo, J.; Boateng, L. K.; Her, N.; Flora, J. R. V.; Yoon, J.; Zoh, K. D.; Yoon, Y. Ultrasonic degradation of acetaminophen and naproxen in the presence of single-walled carbon nanotubes. J. Hazard. Mater. 2013, 254–255, 284–292.Google Scholar
  17. [17]
    Nam, S. W.; Jung, C.; Li, H.; Yu, M.; Flora, J. R. V.; Boateng, L. K.; Her, N.; Zoh, K. D.; Yoon, Y. Adsorption characteristics of diclofenac and sulfamethoxazole to graphene oxide in aqueous solution. Chemosphere 2015, 136, 20–26.Google Scholar
  18. [18]
    Song, B.; Xu, P.; Zeng, G. M.; Gong, J. L.; Zhang, P.; Feng, H. P.; Liu, Y.; Ren, X. Y. Carbon nanotube-based environmental technologies: The adopted properties, primary mechanisms, and challenges. Rev. Environ. Sci. Biotechnol. 2018, 17, 571–590.Google Scholar
  19. [19]
    Zhu, Y. Q.; Sun, W. M.; Chen, W. X.; Cao, T.; Xiong, Y.; Luo, J.; Dong, J. C.; Zheng, L. R.; Zhang, J.; Wang, X. L. et al. Scale-up biomass pathway tocobalt single-site catalysts anchored on N-doped porous carbon nanobelt with ultrahigh surface area. Adv. Funct. Mater. 2018, 28, 1802167.Google Scholar
  20. [20]
    Zhu, Y. Q.; Cao, C. B.; Tao, S.; Chu, W. S.; Wu, Z. Y.; Li, Y. D. Ultrathin nickel hydroxide and oxide nanosheets: Synthesis, characterizations and excellent supercapacitor performances. Sci. Rep. 2014, 4, 5787.Google Scholar
  21. [21]
    Zhu, Y. Q.; Cao, C. B.; Zhang, J. T.; Xu, X. Y. Two-dimensional ultrathin ZnCo2O4 nanosheets: General formation and lithium storage application. J. Mater. Chem. A. 2015, 3, 9556–9564.Google Scholar
  22. [22]
    Zhu, Y. Q.; Guo, H. Z.; Zhai, H. Z.; Cao, C. B. Microwave-assisted and gram-scale synthesis of ultrathin SnO2 nanosheets with enhanced lithium storage properties. ACS Appl. Mater. Interfaces 2015, 7, 2745–2753.Google Scholar
  23. [23]
    Zhu, Y. Q.; Cao, C. B. A simple synthesis of two-dimensional ultrathin nickel cobaltite nanosheets for electrochemical lithium storage. Electrochim. Acta 2015, 176, 141–148.Google Scholar
  24. [24]
    Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. in press, DOI: 10.1007/s40843-018-9324-0.Google Scholar
  25. [25]
    Bo, Z.; Mao, S.; Han, Z. J.; Cen, K. F.; Chen, J. H.; Ostrikov, K. Emerging energy and environmental applications of vertically-oriented graphenes. Chem. Soc. Rev. 2015, 44, 2108–2121.Google Scholar
  26. [26]
    Wang, Q.; Guo, X. F.; Cai, L. C.; Cao, Y.; Gan, L.; Liu, S.; Wang, Z. X.; Zhang, H. T.; Li, L. D. TiO2-decorated graphenes as efficient photoswitches with high oxygen sensitivity. Chem. Sci. 2011, 2, 1860–1864.Google Scholar
  27. [27]
    Chang, C. F.; Truong, Q. D.; Chen, J. R. Graphene sheets synthesized by ionic-liquid-assisted electrolysis for application in water purification. Appl. Surf. Sci. 2013, 264, 329–334.Google Scholar
  28. [28]
    Huang, Z. H.; Zheng, X. Y.; Lv, W.; Wang, M.; Yang, Q. H.; Kang, F. Y. Adsorption of lead(II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir 2011, 27, 7558–7562.Google Scholar
  29. [29]
    Leng, Y. Q.; Guo, W. L.; Su, S. N.; Yi, C. L.; Xing, L. T. Removal of antimony(III) from aqueous solution by graphene as an adsorbent. Chem. Eng. J. 2012, 211–212, 406–411.Google Scholar
  30. [30]
    Apul, O. G.; Wang, Q. L.; Zhou, Y.; Karanfil. T. Adsorption of aromatic organic contaminants by graphene nanosheets: Comparison with carbon nanotubes and activated carbon. Water Res. 2013, 47, 1648–1654.Google Scholar
  31. [31]
    Bi, H. C.; Xie, X.; Yin, K. B.; Zhou, Y. L.; Wan, S.; He, L. B.; Xu, F.; Banhart, F.; Sun, L. T.; Ruoff, R. S. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv. Funct. Mater. 2012, 22, 4421–4425.Google Scholar
  32. [32]
    Cai, N.; Larese-Casanova, P. Application of positively-charged ethylenediaminefunctionalized graphene for the sorption of anionic organic contaminants from water. J. Environ. Chem. Eng. 2016, 4, 2941–2951.Google Scholar
  33. [33]
    Chen, X. X.; Chen, B. L. Macroscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide, reduced graphene oxide, and graphene nanosheets. Environ. Sci. Technol. 2015, 49, 6181–6189.Google Scholar
  34. [34]
    Liu, T. H.; Li, Y. H.; Du, Q. J.; Sun, J. K.; Jiao, Y. Q.; Yang, G. M.; Wang, Z. H.; Xia, Y. Z.; Zhang, W.; Wang, K. L. et al. Adsorption of methylene blue from aqueous solution by graphene. Colloids. Surf. B Biointerfaces 2012, 90, 197–203.Google Scholar
  35. [35]
    Pei, Z. G.; Li, L. Y.; Sun, L. X.; Zhang, S. Z.; Shan, X. Q.; Yang, S.; Wen, B. Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide. Carbon 2013, 51, 156–163.Google Scholar
  36. [36]
    Raad, M. T.; Behnejad, H.; El Jamal, M. Equilibrium and kinetic studies for the adsorption of benzene and toluene by graphene nanosheets: A comparison with carbon nanotubes. Surf. Interface Anal. 2016, 48, 117–125.Google Scholar
  37. [37]
    Ayati, A.; Shahrak, M. N.; Tanhaei, B.; Sillanpää, M. Emerging adsorptive removal of azo dye by metal-organic frameworks. Chemosphere 2016, 160, 30–44.Google Scholar
  38. [38]
    Huang, L. J.; He, M.; Chen, B. B.; Hu, B. Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water. Chemosphere 2018, 199, 435–444.Google Scholar
  39. [39]
    Zhong, Y.; Xia, X. H.; Shi, F.; Zhan, J. Y.; Tu, J. P.; Fan, H. J. Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 2016, 3, 1500286.Google Scholar
  40. [40]
    Ding, L.; Wei, Y. Y.; Wang, Y. J.; Chen, H. B.; Caro, J.; Wang, H. H. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem., Int. Ed. 2017, 56, 1825–1829.Google Scholar
  41. [41]
    Han, R. L.; Ma, X. F.; Xie, Y. L.; Teng, D.; Zhang, S. H. Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux. RSC. Adv. 2017, 7, 56204–56210.Google Scholar
  42. [42]
    Mashtalir, O.; Cook, K. M.; Mochalin, V. N.; Crowe, M.; Barsoum, M. W.; Gogotsi, Y. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A 2014, 2, 14334–14338.Google Scholar
  43. [43]
    Zou, G. D.; Guo, J. X.; Peng, Q. M.; Zhou, A. G.; Zhang, Q. R.; Liu, B. Z. Synthesis of urchin-like rutile titania carbon nanocomposites by ironfacilitated phase transformation of MXene for environmental remediation. J. Mater. Chem. A 2016, 4, 489–499.Google Scholar
  44. [44]
    Chaudhari, N. K.; Jin, H.; Kim, B.; Baek, D. S.; Joo, S. H.; Lee, K. MXene: An emerging two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A 2017, 5, 24564–24579.Google Scholar
  45. [45]
    Khazaei, M.; Ranjbar, A.; Arai, M.; Sasaki, T.; Yunoki, S. Electronic properties and applications of MXenes: A theoretical review. J. Mater. Chem. C 2017, 5, 2488–2503.Google Scholar
  46. [46]
    Zhu, J. Y.; Hou, J. W.; Uliana, A.; Zhang, Y. T.; Tian, M. M.; van der Bruggen, B. The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes. J. Mater. Chem. A 2018, 6, 3773–3792.Google Scholar
  47. [47]
    Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.Google Scholar
  48. [48]
    Naguib, M.; Gogotsi, Y. Synthesis of two-dimensional materials by selective extraction. Acc. Chem. Res. 2015, 48, 128–135.Google Scholar
  49. [49]
    Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.Google Scholar
  50. [50]
    Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.Google Scholar
  51. [51]
    Zhao, Y.; Watanabe, K.; Hashimoto, K. Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer. J. Am. Chem. Soc. 2012, 134, 19528–19531.Google Scholar
  52. [52]
    Khazaei, M.; Arai, M.; Sasaki, T.; Estili, M.; Sakka, Y. Two-dimensional molybdenum carbides: Potential thermoelectric materials of the MXene family. Phys. Chem. Chem. Phys. 2014, 16, 7841–7849.Google Scholar
  53. [53]
    Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2TX MXene). Chem. Mater. 2017, 29, 7633–7644.Google Scholar
  54. [54]
    Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Taberna, P. L.; Simon, P.; Barsoum, M. W.; Gogotsi Y. MXene: A promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 2012, 16, 61–64.Google Scholar
  55. [55]
    Ren, C. E.; Zhao, M. Q.; Makaryan, T.; Halim, J.; Boota, M.; Kota, S.; Anasori, B.; Barsoum, M. W.; Gogotsi, Y. Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage. Chemelectrochem. 2016, 3, 689–693.Google Scholar
  56. [56]
    Tang, Q.; Zhou, Z.; Shen, P. W. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 2012, 134, 16909–16916.Google Scholar
  57. [57]
    Chen, C.; Boota, M.; Urbankowski, P.; Anasori B.; Miao, L.; Jiang, J. J.; Gogotsi, Y. Effect of glycine functionalization of 2D titanium carbide (MXene) on charge storage. J. Mater. Chem. A 2018, 6, 4617–4622.Google Scholar
  58. [58]
    Couly, C.; Alhabeb, M.; van Aken, K. L.; Kurra, N.; Gomes, L.; Navarro-Suarez, A. M.; Anasori, B.; Alshareef, H. N.; Gogotsi, Y. Asymmetric flexible MXene-reduced graphene oxide micro-supercapacitor. Adv. Electron. Mater. 2018, 4, 1700339.Google Scholar
  59. [59]
    Fu, Q. S.; Wang, X. Y.; Zhang, N.; Wen, J.; Li, L.; Gao, H.; Zhang, X. T. Self-assembled Ti3C2Tx/SCNT composite electrode with improved electrochemical performance for supercapacitor. J. Colloid. Interf. Sci. 2018, 511, 128–134.Google Scholar
  60. [60]
    Liu, F. F.; Zhou, J.; Wang, S. W.; Wang, B. X.; Shen, C.; Wang, L. B.; Hu, Q. K.; Huang, Q.; Zhou, A. G. Preparation of high-purity V2C MXene and electrochemical properties as Li-ion batteries. J. Electrochem. Soc. 2017, 164, A709–A713.Google Scholar
  61. [61]
    Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional transition metal carbides. ACS Nano 2012, 6, 1322–1331.Google Scholar
  62. [62]
    Meshkian, R.; Tao, Q. Z.; Dahlqvist, M.; Lu, J.; Hultman, L.; Rosen, J. Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2 MXene. Acta Mater. 2017, 125, 476–480.Google Scholar
  63. [63]
    Zhou, J.; Zha, X. H.; Chen, F. Y.; Ye, Q.; Eklund, P.; Du, S. Y.; Huang, Q. A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew. Chem., Int. Ed. 2016, 55, 5008–5013.Google Scholar
  64. [64]
    Yang, J.; Naguib, M.; Ghidiu, M.; Pan, L. M.; Gu, J.; Nanda, J.; Halim, J.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional Nb-based M4C3 solid solutions (MXenes). J. Am. Ceram. Soc. 2016, 99, 660–666.Google Scholar
  65. [65]
    Naguib, M.; Halim, J.; Lu, J.; Cook, K. M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 2013, 135, 15966–15969.Google Scholar
  66. [66]
    Urbankowski, P.; Anasori, B.; Makaryan, T.; Er, D. Q.; Kota, S.; Walsh, P. L.; Zhao, M. Q.; Shenoy, V. B.; Barsoum, M. W.; Gogotsi, Y. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 2016, 8, 11385–11391.Google Scholar
  67. [67]
    Halim, J.; Lukatskaya, M. R.; Cook, K. M.; Lu, J.; Smith, C. R.; Näslund, L. Å.; May, S. J.; Hultman, L.; Gogotsi, Y.; Eklund, P. et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 2014, 26, 2374–2381.Google Scholar
  68. [68]
    Ghidiu, M.; Naguib, M.; Shi, C.; Mashtalir, O.; Pan, L. M.; Zhang, B.; Yang, J.; Gogotsi, Y.; Billinge, S. J. L.; Barsoum, M. W. Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chem. Commun. 2014, 50, 9517–9520.Google Scholar
  69. [69]
    Mashtalir, O.; Lukatskaya, M. R.; Zhao, M. Q.; Barsoum, M. W.; Gogotsi, Y. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv. Mater. 2015, 27, 3501–3506.Google Scholar
  70. [70]
    Anasori, B.; Xie, Y.; Beidaghi, M.; Lu, J.; Hosler, B. C.; Hultman, L.; Kent, P. R. C.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 2015, 9, 9507–9516.Google Scholar
  71. [71]
    Tao, Q. Z.; Dahlqvist, M.; Lu, J.; Kota, S.; Meshkian, R.; Halim, J.; Palisaitis, J.; Hultman, L.; Barsoum, M. W.; Persson, P. O. Å. et al. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun. 2017, 8, 14949.Google Scholar
  72. [72]
    Karlsson, L. H.; Birch, J.; Halim, J.; Barsoum, M. W.; Persson, P. O. Å. Atomically resolved structural and chemical investigation of single MXene sheets. Nano Lett. 2015, 15, 4955–4960.Google Scholar
  73. [73]
    Khazaei, M.; Arai, M.; Sasaki, T.; Chung, C. Y.; Venkataramanan, N. S.; Estili, M.; Sakka, Y.; Kawazoe, Y. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Adv. Funct. Mater. 2013, 23, 2185–2192.Google Scholar
  74. [74]
    Guo, Z. L.; Zhou, J.; Si, C.; Sun, Z. M. Flexible two-dimensional Tin+1Cn (n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Phys. Chem. Chem. Phys. 2015, 17, 15348–15354.Google Scholar
  75. [75]
    Fu, Z. H.; Zhang, Q. F.; Legut, D.; Si, C.; Germann, T. C.; Lookman, T.; Du, S. Y.; Francisco. J. S.; Zhang, R. F. Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide. Phys. Rev. B 2016, 94, 104103.Google Scholar
  76. [76]
    Guo, Z. L.; Zhu, L. G.; Zhou, J.; Sun, Z. M. Microscopic origin of MXenes derived from layered MAX phases. RSC Adv. 2015, 5, 25403–25408.Google Scholar
  77. [77]
    Khazaei, M.; Arai, M.; Sasaki, T.; Estili, M.; Sakka, Y. Trends in electronic structures and structural properties of MAX phases: A first-principles study on M2AlC (M = Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2AlN, and hypothetical M2AlB phases. J. Phys. Condens. Matter. 2014, 26, 505503.Google Scholar
  78. [78]
    Weng, H. M.; Ranjbar, A.; Liang, Y. Y.; Song, Z. D.; Khazaei, M.; Yunoki, S.; Arai, M.; Kawazoe, Y.; Fang, Z.; Dai, X. Large-gap two-dimensional topological insulator in oxygen functionalized MXene. Phys. Rev. B 2015, 92, 075436.Google Scholar
  79. [79]
    Nava, A.; Giuliano, R.; Campagnano, G.; Giuliano, D. Transfer matrix approach to the persistent current in quantum rings: Application to hybrid normal-superconducting rings. Phys. Rev. B 2016, 94, 205125.Google Scholar
  80. [80]
    Mariano, M.; Mashtalir, O.; Antonio, F. Q.; Ryu, W. H.; Deng, B. C.; Xia, F. N.; Gogotsi, Y.; Taylor, A. D. Solution-processed titanium carbide MXene films examined as highly transparent conductors. Nanoscale 2016, 8, 16371–16378.Google Scholar
  81. [81]
    Hu, J. P.; Xu, B.; Ouyang, C. Y.; Yang, S. A.; Yao, Y. G. Investigations on V2C and V2CX2 (X = F, OH) monolayer as a promising anode material for Li ion batteries from first-principles calculations. J. Phys. Chem. C 2014, 118, 24274–24281.Google Scholar
  82. [82]
    Zhao, S. J.; Kang, W.; Xue, J. M. Manipulation of electronic and magnetic properties of M2C (M = Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains. Appl. Phys. Lett. 2014, 104, 133106.Google Scholar
  83. [83]
    Gao, G. Y.; Ding, G. Q.; Li, J.; Yao, K. L.; Wu, M. H.; Qian, M. C. Monolayer MXenes: Promising half-metals and spin gapless semiconductors. Nanoscale 2016, 8, 8986–8994.Google Scholar
  84. [84]
    Berdiyorov, G. R. Effect of surface functionalization on the electronic transport properties of Ti3C2 MXene. Europhys. Lett. 2015, 111, 67002.Google Scholar
  85. [85]
    Mao, J. J.; Iocozzia, J.; Huang, J. Y.; Meng, K.; Lai, Y. K.; Lin, Z. Q. Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 2018, 11, 772–799.Google Scholar
  86. [86]
    Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.Google Scholar
  87. [87]
    Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275.Google Scholar
  88. [88]
    Xue, Q.; Pei, Z. X.; Huang, Y.; Zhu, M. S.; Tang, Z. J.; Li, H. F.; Huang, Y.; Li, N.; Zhang, H. Y.; Zhi, C. Y. Mn3O4 nanoparticles on layer-structured Ti3C2 MXene towards the oxygen reduction reaction and zinc-air batteries. J. Mater. Chem. A 2017, 5, 20818–20823.Google Scholar
  89. [89]
    Zhang, Z. W.; Li, H. N.; Zou, G. D.; Fernandez, C.; Liu, B. Z.; Zhang, Q. R.; Hu, J.; Peng, Q. M. Self-reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity. ACS Sustain. Chem. Eng. 2016, 4, 6763–6771.Google Scholar
  90. [90]
    Ran, J. R.; Gao, G. P.; Li, F. T.; Ma, T. Y.; Du, A. J.; Qiao, S. Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907.Google Scholar
  91. [91]
    Zhao, L.; Dong, B. L.; Li, S. Z.; Zhou, L. J.; Lai, L. F.; Wang, Z. W.; Zhao, S. L.; Han, M.; Gao, K.; Lu, M. et al. Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano 2017, 11, 5800–5807.Google Scholar
  92. [92]
    Yu, M. Z.; Zhou, S.; Wang, Z. Y.; Zhao, J. J.; Qiu, J. S. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy 2018, 44, 181–190.Google Scholar
  93. [93]
    Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.Google Scholar
  94. [94]
    She, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.Google Scholar
  95. [95]
    Ling, T.; Yan, D. Y.; Jiao, Y.; Wang, H.; Zheng, Y.; Zheng, X. L.; Mao, J.; Du, X. W.; Hu, Z. P.; Jaroniec, M. et al. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. Nat. Commun. 2016, 7, 12876.Google Scholar
  96. [96]
    Ganesan, P.; Sivanantham, A.; Shanmugam, S. Inexpensive electrochemical synthesis of nickel iron sulphides on nickel foam: Super active and ultra-durable electrocatalysts for alkaline electrolyte membrane water electrolysis. J. Mater. Chem. A 2016, 4, 16394–16402.Google Scholar
  97. [97]
    Umena, Y.; Kawakami, K.; Shen, J. R.; Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 2011, 473, 55–60.Google Scholar
  98. [98]
    Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.Google Scholar
  99. [99]
    Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.Google Scholar
  100. [100]
    Safizadeh, F.; Ghali, E.; Houlachi, G. Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions - A review. Int. J. Hydrog. Energy 2015, 40, 256–274.Google Scholar
  101. [101]
    Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B.; C. Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.Google Scholar
  102. [102]
    Bao, J.; Zhang, X. D.; Fan, B.; Zhang, J. J.; Zhou, M.; Yang, W. L.; Hu, X.; Wang, H.; Pan, B. C.; Xie, Y. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2015, 54, 7399–7404.Google Scholar
  103. [103]
    Li, S.; Tuo, P.; Xie, J. F.; Zhang, X. D.; Xu, J. G.; Bao, J.; Pan, B. C.; Xie, Y. Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy 2018, 47, 512–518.Google Scholar
  104. [104]
    Acar, C.; Dincer, I.; Naterer, G. F. Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int. J. Energy Res. 2016, 40, 1449–1473.Google Scholar
  105. [105]
    Li, J. T.; Wu, N. Q. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catal. Sci. Technol. 2015, 5, 1360–1384.Google Scholar
  106. [106]
    Li, W.; Gao, R.; Chen, M.; Zhou, S. X.; Wu, L. M. Facile synthesis and unique photocatalytic property of niobium pentoxide hollow spheres and the high optoelectronic performance of their nanofilm. J. Colloid Interface Sci. 2013, 411, 220–229.Google Scholar
  107. [107]
    Su, T. M.; Peng, R.; Hood, Z. D.; Naguib, M.; Ivanov, I. N.; Keum, J. K.; Qin, Z. Z.; Guo, Z. H.; Wu, Z. L. One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution. ChemSusChem. 2018, 11, 688–699.Google Scholar
  108. [108]
    An, X. Q.; Wang, W.; Wang, J. P.; Duan, H. Z.; Shi, J. T.; Yu, X. L. The synergetic effects of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4. Phys. Chem. Chem. Phys. 2018, 20, 11405–11411.Google Scholar
  109. [109]
    Guo, Z. L.; Zhou, J.; Zhu, L. G.; Sun, Z. M. MXene: A promising photocatalyst for water splitting. J. Mater. Chem. A 2016, 4, 11446–11452.Google Scholar
  110. [110]
    Li, N.; Chen, X. Z.; Ong, W. J.; MacFarlane, D. R.; Zhao, X. J.; Cheetham, A. K.; Sun, C. H. Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano 2017, 11, 10825–10833.Google Scholar
  111. [111]
    Pandey, M.; Thygesen, K. S. Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: A computational screening study. J. Phys. Chem. C 2017, 121, 13593–13598.Google Scholar
  112. [112]
    Guo, Z. L.; Zhou, J.; Sun, Z. M. New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. J. Mater. Chem. A 2017, 5, 23530–23535.Google Scholar
  113. [113]
    Jiang, Z.; Wang, P.; Jiang, X.; Zhao, J. J. MBene (MnB): A new type of 2D metallic ferromagnet with high Curie temperature. Nanoscale Horiz. 2018, 3, 335–341.Google Scholar
  114. [114]
    Yang, X. W.; Gao, N.; Zhou, S.; Zhao, J. J. MXene nanoribbons as electrocatalysts for the hydrogen evolution reaction with fast kinetics. Phys. Chem. Chem. Phys. 2018, 20, 19390–19397.Google Scholar
  115. [115]
    Zhou, S.; Yang, X. W.; Pei, W.; Liu, N. S.; Zhao, J. J. Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts. Nanoscale 2018, 10, 10876–10883.Google Scholar
  116. [116]
    Díaz-González, F.; Sumper, A.; Gomis-Bellmunt, O.; Villafáfila-Robles, R. A review of energy storage technologies for wind power applications. Renew. Sust. Energy Rev. 2012, 16, 2154–2171.Google Scholar
  117. [117]
    Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Wang, X. L.; Gu, C. D.; Zhao, X. B.; Fan, H. J. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 2012, 6, 5531–5538.Google Scholar
  118. [118]
    Li, H. B.; Yu, M. H.; Wang, F. X.; Liu, P.; Liang, Y.; Xiao, J.; Wang, C. X.; Tong, Y. X.; Yang, G. W. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat. Commun. 2013, 4, 1894.Google Scholar
  119. [119]
    Luo, J. M.; Tao, X. Y.; Zhang, J.; Xia, Y.; Huang, H.; Zhang, L. Y.; Gan, Y. P.; Liang, C.; Zhang, W. K. Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 2016, 10, 2491–2499.Google Scholar
  120. [120]
    Xia, Q. X.; Shinde, N. M.; Yun, J. M.; Zhang, T. F.; Mane, R. S.; Mathur, S.; Kim, K. H. Bismuth oxychloride/MXene symmetric supercapacitor with high volumetric energy density. Electrochim. Acta 2018, 271, 351–360.Google Scholar
  121. [121]
    Rakhi, R. B.; Ahmed, B.; Hedhili, M. N.; Anjum, D. H.; Alshareef, H. N. Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater. 2015, 27, 5314–5323.Google Scholar
  122. [122]
    Faraji, S.; Ani, F. N. Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors-A review. J. Power Sources 2014, 263, 338–360.Google Scholar
  123. [123]
    Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.Google Scholar
  124. [124]
    Xiao, Y.; Hwang, J. Y.; Sun, Y. K. Transition metal carbide-based materials: Synthesis and applications in electrochemical energy storage. J. Mater. Chem. A 2016, 4, 10379–10393.Google Scholar
  125. [125]
    Zhou, J.; Zha, X. H.; Zhou, X. B.; Chen, F. Y.; Gao, G. L.; Wang, S. W.; Shen, C.; Chen, T.; Zhi, C. Y.; Eklund, P. et al. Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano 2017, 11, 3841–3850.Google Scholar
  126. [126]
    Pomerantseva, E.; Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nat. Energy 2017, 2, 17089.Google Scholar
  127. [127]
    Chen, C.; Xie, X. Q.; Anasori, B.; Sarycheva, A.; Makaryan, T.; Zhao, M. Q.; Urbankowski, P.; Miao, L.; Jiang, J. J.; Gogotsi, Y. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 1846–1850.Google Scholar
  128. [128]
    Chao, Y. F.; Jalili, R.; Ge, Y.; Wang, C. Y.; Zheng, T.; Shu, K. W.; Wallace, G. G. Self-assembly of flexible free-standing 3D porous MoS2- reduced graphene oxide structure for high-performance lithium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700234.Google Scholar
  129. [129]
    Xuan, J. N.; Wang, Z. Q.; Chen, Y. Y.; Liang, D. J.; Cheng, L.; Yang, X. J.; Liu, Z.; Ma, R. Z.; Sasaki, T.; Geng, F. X. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem., Int. Ed. 2016, 55, 14569–14574.Google Scholar
  130. [130]
    Huang, J. M.; Meng, R. J.; Zu, L. H.; Wang, Z. J.; Feng, N.; Yang, Z. Y.; Yu, Y.; Yang, J. H. Sandwich-like Na0.23TiO2 nanobelt/Ti3C2 MXene composites from a scalable in situ transformation reaction for long-life high-rate lithium/sodium-ion batteries. Nano Energy 2018, 46, 20–28.Google Scholar
  131. [131]
    Chowdhury, S.; Mazumder, M. A. J.; Al-Attas, O.; Husain, T. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Sci. Total Environ. 2016, 569–570, 476–488.Google Scholar
  132. [132]
    Huber, M.; Welker, A.; Helmreich, B. Critical review of heavy metal pollution of traffic area runoff: Occurrence, influencing factors, and partitioning. Sci. Total Environ. 2016, 541, 895–919.Google Scholar
  133. [133]
    Ryu, J.; Yoon, Y.; Oh, J. Occurrence of endocrine disrupting compounds and pharmaceuticals in 11 WWTPs in Seoul, Korea. KSCE J. Civil Eng. 2011, 15, 57–64.Google Scholar
  134. [134]
    Yoon, Y.; Ryu, J.; Oh, J.; Choi, B. G.; Snyder, S. A. Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Sci. Total Environ. 2010, 408, 636–643.Google Scholar
  135. [135]
    Grandclément, C.; Seyssiecq, I.; Piram, A.; Wong-Wah-Chung, P.; Vanot, G.; Tiliacos, N.; Roche, N.; Doumenq, P. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review. Water Res. 2017, 111, 297–317.Google Scholar
  136. [136]
    Yi, X. Z.; Tran, N. H.; Yin, T. R.; He, Y. L.; Gin, K. Y. H. Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system. Water Res. 2017, 121, 46–60.Google Scholar
  137. [137]
    Al-Hamadani, Y. A. J.; Chu, K. H.; Flora, J. R. V.; Kim, D. H.; Jang, M.; Sohn, J.; Joo, W.; Yoon, Y. Sonocatalytical degradation enhancement for ibuprofen and sulfamethoxazole in the presence of glass beads and single-walled carbon nanotubes. Ultrason. Sonochem. 2016, 32, 440–448.Google Scholar
  138. [138]
    Chu, K. H.; Fathizadeh, M.; Yu, M.; Flora, J. R. V.; Jang, A.; Jang, M.; Park, C. M.; Yoo, S. S.; Her, N.; Yoon, Y. Evaluation of removal mechanisms in a graphene oxide-coated ceramic ultrafiltration membrane for retention of natural organic matter, pharmaceuticals, and inorganic salts. ACS Appl. Mater. Interfaces 2017, 9, 40369–40377.Google Scholar
  139. [139]
    Chu, K. H.; Huang, Y.; Yu, M.; Her, N.; Flora, J. R. V.; Park, C. M.; Kim, S.; Cho, J.; Yoon, Y. Evaluation of humic acid and tannic acid fouling in graphene oxide-coated ultrafiltration membranes. ACS Appl. Mater. Interfaces 2016, 8, 22270–22279.Google Scholar
  140. [140]
    Heo, J.; Boateng, L. K.; Flora, J. R. V.; Lee, H.; Her, N.; Park, Y. G.; Yoon, Y. Comparison of flux behavior and synthetic organic compound removal by forward osmosis and reverse osmosis membranes. J. Membrane Sci. 2013, 443, 69–82.Google Scholar
  141. [141]
    Jung, C.; Park, J.; Lim, K. H.; Park, S.; Heo, J.; Her, N.; Oh, J.; Yun, S.; Yoon Y. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars. J. Hazard. Mater. 2013, 263, 702–710.Google Scholar
  142. [142]
    Jung, C.; Son, A.; Her, N.; Zoh, K. D.; Cho, J.; Yoon, Y. Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review. J. Ind. Eng. Chem. 2015, 27, 1–11.Google Scholar
  143. [143]
    Nam, S. W.; Yoon, Y.; Choi, D. J.; Zoh, K. D. Degradation characteristics of metoprolol during UV/chlorination reaction and a factorial design optimization. J. Hazard. Mater. 2015, 285, 453–463.Google Scholar
  144. [144]
    Park, C. M.; Han, J.; Chu, K. H.; Al-Hamadani, Y. A. J.; Her, N.; Heo, J.; Yoon, Y. Influence of solution pH, ionic strength, and humic acid on cadmium adsorption onto activated biochar: Experiment and modeling. J. Ind. Eng. Chem. 2017, 48, 186–193.Google Scholar
  145. [145]
    Park, C. M.; Heo, J.; Wang, D. J.; Su, C. M.; Yoon, Y. Heterogeneous activation of persulfate by reduced graphene oxide-elemental silver/magnetite nanohybrids for the oxidative degradation of pharmaceuticals and endocrine disrupting compounds in water. Appl. Catal. B Environ. 2018, 225, 91–99.Google Scholar
  146. [146]
    Park, C. M.; Heo, J.; Yoon, Y. Oxidative degradation of bisphenol A and 17α-ethinyl estradiol by Fenton-like activity of silver nanoparticles in aqueous solution. Chemosphere 2017, 168, 617–622.Google Scholar
  147. [147]
    Park, J. S.; Her, N.; Oh, J.; Yoon, Y. Sonocatalytic degradation of bisphenol A and 17α-ethinyl estradiol in the presence of stainless steel wire mesh catalyst in aqueous solution. Sep. Purif. Technol. 2011, 78, 228–236.Google Scholar
  148. [148]
    Sinha, S.; Amy, G.; Yoon, Y.; Her, N. Arsenic removal from water using various adsorbents: Magnetic ion exchange resins, hydrous ion oxide particles, granular ferric hydroxide, activated alumina, sulfur modified iron, and iron oxide-coated microsand. Environ. Eng. Res. 2011, 16, 165–173.Google Scholar
  149. [149]
    Chowdhury, S.; Balasubramanian, R. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv. Colloid Interface Sci. 2014, 204, 35–56.Google Scholar
  150. [150]
    Mashtalir, O.; Naguib, M.; Mochalin, V. N.; Dall’Agnese, Y.; Heon, M.; Barsoum, M. W.; Gogotsi, Y. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 2013, 4, 1716.Google Scholar
  151. [151]
    Zheng, W.; Zhang, P. G.; Tian, W. B.; Qin, X.; Zhang, Y. M.; Sun, Z. M. Alkali treated Ti3C2Tx MXenes and their dye adsorption performance. Mater. Chem. Phys. 2018, 206, 270–276.Google Scholar
  152. [152]
    Fard, A. K.; McKay, G.; Chamoun, R.; Rhadfi, T.; Preud’Homme, H.; Atieh, M. A. Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent. Chem. Eng. J. 2017, 317, 331–342.Google Scholar
  153. [153]
    Shahzad, A.; Rasool, K.; Miran, W.; Nawaz, M.; Jang, J.; Mahmoud, K. A.; Lee, D. S. Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite. J. Hazard. Mater. 2018, 344, 811–818.Google Scholar
  154. [154]
    Shahzad, A.; Rasool, K.; Miran, W.; Nawaz, M.; Jang, J.; Mahmoud, K. A.; Lee, D. S. Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustain. Chem. Eng. 2017, 5, 11481–11488.Google Scholar
  155. [155]
    Wang, L.; Tao, W. Q.; Yuan, L. Y.; Liu, Z. R.; Huang, Q.; Chai, Z. F.; Gibson, J. K.; Shi, W. Q. Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chem. Commun. 2017, 53, 12084–12087.Google Scholar
  156. [156]
    Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater. 2010, 177, 70–80.Google Scholar
  157. [157]
    Ghosh, D.; Bhattacharyya, K. G. Adsorption of methylene blue on kaolinite. Appl. Clay Sci. 2002, 20, 295–300.Google Scholar
  158. [158]
    Ai, L. H.; Zhang, C. Y.; Chen, Z. L. Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. J. Hazard. Mater. 2011, 192, 1515–1524.Google Scholar
  159. [159]
    Bradder, P.; Ling, S. K.; Wang, S. B.; Liu, S. M. Dye adsorption on layered graphite oxide. J. Chem. Eng. Data. 2011, 56, 138–141.Google Scholar
  160. [160]
    Liu, P.; Zhang, L. X. Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents. Sep. Purif. Technol. 2007, 58, 32–39.Google Scholar
  161. [161]
    Rytwo, G.; Nir, S.; Margulies, L.; Casal, B.; Merino, J.; Ruiz-Hitzky, E.; Serratosa, J. M. Adsorption of monovalent organic cations on sepiolite: Experimental results and model calculations. Clay Clay Miner. 1998, 46, 340–348.Google Scholar
  162. [162]
    Hadi, P.; To, M. H.; Hui, C. W.; Lin, C. S. K.; McKay, G. Aqueous mercury adsorption by activated carbons. Water Res. 2015, 73, 37–55.Google Scholar
  163. [163]
    Collins, I. R. Surface electrical properties of barium sulfate modified by adsorption of poly α, β aspartic acid. J. Colloid Interface Sci. 1999, 212, 535–544.Google Scholar
  164. [164]
    Aïssa, B.; Ali, A.; Mahmoud, K. A.; Haddad, T.; Nedil, M. Transport properties of a highly conductive 2D Ti3C2Tx MXene/graphene composite. Appl. Phys. Lett. 2016, 109, 043109.Google Scholar
  165. [165]
    Xing, H. T.; Chen, J. H.; Sun, X.; Huang, Y. H.; Su, Z. B.; Hu, S. R.; Weng, W.; Li, S. X.; Guo, H. X.; Wu, W. B. et al. NH2-rich polymer/graphene oxide use as a novel adsorbent for removal of Cu(II) from aqueous solution. Chem. Eng. J. 2015, 263, 280–289.Google Scholar
  166. [166]
    Hidmi, L.; Edwards, M. Role of temperature and pH in Cu(OH)2 solubility. Environ. Sci. Technol. 1999, 33, 2607–2610.Google Scholar
  167. [167]
    Han, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152–3153.Google Scholar
  168. [168]
    Rachel, A.; Subrahmanyam, M.; Boule, P. Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilised form for the photocatalytic degradation of nitrobenzenesulfonic acids. Appl. Catal. B Environ. 2002, 37, 301–308.Google Scholar
  169. [169]
    Yuan, X. Y.; Wang, Y. F.; Wang, J.; Zhou, C.; Tang, Q.; Rao, X. B. Calcined graphene/MgAl-layered double hydroxides for enhanced Cr(VI) removal. Chem. Eng. J. 2013, 221, 204–213.Google Scholar
  170. [170]
    Sahraei, R.; Pour, Z. S.; Ghaemy, M. Novel magnetic bio-sorbent hydrogel beads based on modified gum tragacanth/graphene oxide: Removal of heavy metals and dyes from water. J. Clean. Prod. 2017, 142, 2973–2984.Google Scholar
  171. [171]
    Torab-Mostaedi, M.; Ghaemi, A.; Ghassabzadeh, H.; Ghannadi-Maragheh, M. Removal of strontium and barium from aqueous solutions by adsorption onto expanded Perlite. Can. J. Chem. Eng. 2011, 89, 1247–1254.Google Scholar
  172. [172]
    Halim, J.; Cook, K. M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M. W. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406–417.Google Scholar
  173. [173]
    Peng, Q. M.; Guo, J. X.; Zhang, Q. R.; Xiang, J. Y.; Liu, B. Z.; Zhou, A. G.; Liu, R. P.; Tian, Y. J. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J. Am. Chem. Soc. 2014, 136, 4113–4116.Google Scholar
  174. [174]
    Genç-Fuhrman, H.; Tjell, J. C.; McConchie, D. Adsorption of arsenic from water using activated neutralized red mud. Environ. Sci. Technol. 2004, 38, 2428–2434.Google Scholar
  175. [175]
    Argun, M. E.; Dursun, S.; Karatas, M. Removal of Cd(II), Pb(II), Cu(II) and Ni(II) from water using modified pine bark. Desalination 2009, 249, 519–527.Google Scholar
  176. [176]
    Rahman, M. M.; Adil, M.; Yusof, A. M.; Kamaruzzaman, Y. B.; Ansary, R. H. Removal of heavy metal ions with acid activated carbons derived from oil palm and coconut shells. Materials 2014, 7, 3634–3650.Google Scholar
  177. [177]
    Yoon, J.; Amy, G.; Chung, J.; Sohn, J.; Yoon, Y. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes. Chemosphere 2009, 77, 228–235.Google Scholar
  178. [178]
    Basu, S.; Mukherjee, S.; Balakrishnan, M.; Deepthi, M. V.; Sailaja, R. R. N. Polysulfone/nanocomposites mixed matrix ultrafiltration membrane for the recovery of Maillard reaction products. Membr. Water. Treat. 2018, 9, 105–113.Google Scholar
  179. [179]
    Jiang, S. K.; Zhang, G. M.; Yan, L.; Wu, Y. Treatment of natural rubber wastewater by membrane technologies for water reuse. Membr. Water. Treat. 2018, 9, 17–21.Google Scholar
  180. [180]
    Sarihan, A.; Eren, E. Novel high performanced and fouling resistant PSf/ZnO membranes for water treatment. Membr. Water. Treat. 2017, 8, 563–574.Google Scholar
  181. [181]
    Valavala, R.; Sohn, J.; Han, J.; Her, N.; Yoon, Y. Pretreatment in reverse osmosis seawater desalination: A short review. Environ. Eng. Res. 2011, 16, 205–212.Google Scholar
  182. [182]
    Werber, J. R.; Osuji, C. O.; Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 2016, 1, 16018Google Scholar
  183. [183]
    Chu, K. H.; Huang, Y.; Yu, M.; Heo, J.; Flora, J. R. V.; Jang, A.; Jang, M.; Jung, C.; Park, C. M.; Kim, D. H. et al. Evaluation of graphene oxidecoated ultrafiltration membranes for humic acid removal at different pH and conductivity conditions. Sep. Purif. Technol. 2017, 181, 139–147.Google Scholar
  184. [184]
    Fathizadeh, M.; Xu, W. L.; Zhou, F. L.; Yoon, Y.; Yu, M. Graphene oxide: A novel 2-dimensional material in membrane separation for water purification. Adv. Mater. Interfaces 2017, 4, 1600918.Google Scholar
  185. [185]
    Gholami, F.; Zinadini, S.; Zinatizadeh, A. A.; Abbasi, A. R. TMU-5 metal-organic frameworks (MOFs) as a novel nanofiller for flux increment and fouling mitigation in PES ultrafiltration membrane. Sep. Purif. Technol. 2018, 194, 272–280.Google Scholar
  186. [186]
    Ma, J.; Guo, X. Y.; Ying, Y. P.; Liu, D. H.; Zhong, C. L. Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance. Chem. Eng. J. 2017, 313, 890–898.Google Scholar
  187. [187]
    Sun, H. Z.; Tang, B. B.; Wu, P. Y. Development of hybrid ultrafiltration membranes with improved water separation properties using modified superhydrophilic metal-organic framework nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 21473–21484.Google Scholar
  188. [188]
    Gadwal, I.; Sheng, G.; Thankamony, R. L.; Liu, Y.; Li, H. F.; Lai, Z. P. Synthesis of sub-10 nm two-dimensional covalent organic thin film with sharp molecular sieving nanofiltration. ACS Appl. Mater. Interfaces 2018, 10, 12295–12299.Google Scholar
  189. [189]
    Li, G.; Zhang, K.; Tsuru, T. Two-dimensional covalent organic framework (COF) membranes fabricated via the assembly of exfoliated COF nanosheets. ACS Appl. Mater. Interfaces 2017, 9, 8433–8436.Google Scholar
  190. [190]
    Mo, Y. H.; Zhao, X.; Shen, Y. X. Cation-dependent structural instability of graphene oxide membranes and its effect on membrane separation performance. Desalination 2016, 399, 40–46.Google Scholar
  191. [191]
    Pandey, R. P.; Rasool, K.; Madhavan, V. E.; Aïssa, B.; Gogotsi, Y.; Mahmoud, K. A. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. J. Mater. Chem. A 2018, 6, 3522–3533.Google Scholar
  192. [192]
    Tang, L.; Livi, K. J. T.; Chen, K. L. Polysulfone membranes modified with bioinspired polydopamine and silver nanoparticles formed in situ to mitigate biofouling. Environ. Sci. Technol. Lett. 2015, 2, 59–65.Google Scholar
  193. [193]
    Guo, F.; Silverberg, G.; Bowers, S.; Kim, S. P.; Datta, D.; Shenoy, V.; Hurt, R. H. Graphene-based environmental barriers. Environ. Sci. Technol. 2012, 46, 7717–7724.Google Scholar
  194. [194]
    Huang, Y.; Li, H.; Wang, L.; Qiao, Y. L.; Tang, C. B.; Jung, C.; Yoon, Y.; Li, S. G.; Yu, M. Ultrafiltration membranes with structure-optimized graphene-oxide coatings for antifouling oil/water separation. Adv. Mater. Interfaces 2015, 2, 1400433.Google Scholar
  195. [195]
    Song, J. J.; Huang, Y.; Nam, S. W.; Yu, M.; Heo, J.; Her, N.; Flora, J. R. V.; Yoon, Y. Ultrathin graphene oxide membranes for the removal of humic acid. Sep. Purif. Technol. 2015, 144, 162–167.Google Scholar
  196. [196]
    Kang, K. M.; Kim, D. W.; Ren, C. E.; Cho, K. M.; Kim, S. J.; Choi, J. H.; Nam, Y. T.; Gogotsi, Y.; Jung, H. T. Selective molecular separation on Ti3C2Tx-graphene oxide membranes during pressure-driven filtration: Comparison with graphene oxide and MXenes. ACS Appl. Mater. Interfaces 2017, 9, 44687–44694.Google Scholar
  197. [197]
    Nakata, K.; Fujishima, A. TiO2 photocatalysis: Design and applications. J. Photoch. Photobio. C Photochem. Rev. 2012, 13, 169–189.Google Scholar
  198. [198]
    Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J. M. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ. 2001, 31, 145–157.Google Scholar
  199. [199]
    Li, J. X.; Wang, S.; Du, Y. L.; Liao, W. H. Enhanced photocatalytic performance of TiO2@C nanosheets derived from two-dimensional Ti2CTx. Ceram. Int. 2018, 44, 7042–7046.Google Scholar
  200. [200]
    Baek, M. H.; Jung, W. C.; Yoon, J. W.; Hong, J. S.; Lee, Y. S.; Suh, J. K. Preparation, characterization and photocatalytic activity evaluation of micro- and mesoporous TiO2/spherical activated carbon. J. Ind. Eng. Chem. 2013, 19, 469–477.Google Scholar
  201. [201]
    Ullah, K.; Meng, Z. D.; Ye, S.; Zhu, L.; Oh, W. C. Synthesis and characterization of novel PbS-graphene/TiO2 composite with enhanced photocatalytic activity. J. Ind. Eng. Chem. 2014, 20, 1035–1042.Google Scholar
  202. [202]
    Lu, Y.; Yao, M. H.; Zhou, A. G.; Hu, Q. K.; Wang, L. B. Preparation and photocatalytic performance of Ti3C2/TiO2/CuO ternary nanocomposites. J. Nanomater. 2017, 2017, 1978764.Google Scholar
  203. [203]
    Perreault, F.; de Faria, A. F.; Elimelech, M. Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 2015, 44, 5861–5896.Google Scholar
  204. [204]
    Park, S.; Yeon, K. M.; Moon, S.; Kim, J. O. Enhancement of operating flux in a membrane bio-reactor coupled with a mechanical sieve unit. Chemosphere 2018, 191, 573–579.Google Scholar
  205. [205]
    Krishnamoorthy, K.; Veerapandian, M.; Zhang, L. H.; Yun, K.; Kim, S. J. Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J. Phys. Chem. C 2012, 116, 17280–17287.Google Scholar
  206. [206]
    Cui, Y. Q.; Zhang, Z. X.; Li, B.; Guo, R. N.; Zhang, X. Y.; Cheng, X. W.; Xie, M. Z.; Cheng, Q. F. Ultrasound assisted fabrication of AgBr/TiO2 nano-tube arrays photoelectrode and its enhanced visible photocatalytic performance and mechanism for detoxification of 4-chlorphenol. Sep. Purif. Technol. 2018, 197, 189–196.Google Scholar
  207. [207]
    Koseoglu-Imer, D. Y.; Kose, B.; Altinbas, M.; Koyuncu, I. The production of polysulfone (PS) membrane with silver nanoparticles (AgNP): Physical properties, filtration performances, and biofouling resistances of membranes. J. Membr. Sci. 2013, 428, 620–628.Google Scholar
  208. [208]
    Rasool, K.; Mahmoud, K. A.; Johnson, D. J.; Helal, M.; Berdiyorov, G. R.; Gogotsi, Y. Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep. 2017, 7, 1598.Google Scholar
  209. [209]
    Rasool, K.; Helal, M.; Ali, A.; Ren, C. E.; Gogotsi, Y.; Mahmoud, K. A. Antibacterial activity of Ti3C2Tx MXene. ACS Nano 2016, 10, 3674–3684.Google Scholar
  210. [210]
    Hu, W. B.; Peng, C.; Luo, W. J.; Lv, M.; Li, X. M.; Li, D.; Huang, Q.; Fan, C. H. Graphene-based antibacterial paper. ACS Nano 2010, 4, 4317–4323.Google Scholar
  211. [211]
    Fu, F. Y.; Li, L. Y.; Liu, L. J.; Cai, J.; Zhang, Y. P.; Zhou, J. P.; Zhang, L. N. Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation. ACS Appl. Mater. Interfaces 2015, 7, 2597–2606.Google Scholar
  212. [212]
    Büttner, K.; Bernhardt, J.; Scharf, C.; Schmid, R.; Mäder, U.; Eymann, C.; Antelmann, H.; Völker, A.; Völker, U.; Hecker, M. A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis. Electrophoresis 2001, 22, 2908–2935.Google Scholar
  213. [213]
    Dong, S. N.; Sun, Y. Y.; Wu, J. C.; Wu, B. J.; Creamer, A. E.; Gao, B. Graphene oxide as filter media to remove levofloxacin and lead from aqueous solution. Chemosphere 2016, 150, 759–764.Google Scholar
  214. [214]
    Wang, J.; Chen, B. L. Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials. Chem. Eng. J. 2015, 281, 379–388.Google Scholar
  215. [215]
    Yang, X.; Chen, C. L.; Li, J. X.; Zhao, G. X.; Ren, X. M.; Wang, X. K. Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. RSC Adv. 2012, 2, 8821–8826.Google Scholar
  216. [216]
    Jiang, L. H.; Liu, Y. G.; Zeng, G. M.; Xiao, F. Y.; Hu, X. J.; Hu, X.; Wang, H.; Li, T. T.; Zhou, L.; Tan, X. F. Removal of 17β-estradiol by few-layered graphene oxide nanosheets from aqueous solutions: External influence and adsorption mechanism. Chem. Eng. J. 2016, 284, 93–102.Google Scholar
  217. [217]
    Liu, F. F.; Zhao, J.; Wang, S. G.; Xing, B. S. Adsorption of sulfonamides on reduced graphene oxides as affected by pH and dissolved organic matter. Environ. Pollut. 2016, 210, 85–93.Google Scholar
  218. [218]
    Lin, Y. X.; Xu, S.; Li, J. Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles. Chem. Eng. J. 2013, 225, 679–685.Google Scholar
  219. [219]
    Liu, F.; Wu, Z. L.; Wang, D. X.; Yu, J. G.; Jiang, X. Y.; Chen, X. Q. Magnetic porous silica-graphene oxide hybrid composite as a potential adsorbent for aqueous removal of p-nitrophenol. Colloids Surf. A Physicochem. Eng. Asp. 2016, 490, 207–214.Google Scholar
  220. [220]
    She, Z. W.; Fredrickson, K. D.; Anasori, B.; Kibsgaard, J.; Strickler, A. L.; Lukatskaya, M. R.; Gogotsi, Y.; Jaramillo, T. F.; Vojvodic, A. Twodimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy. Lett. 2016, 1, 589–594.Google Scholar
  221. [221]
    Ma, T. Y.; Cao, J. L.; Jaroniec, M.; Qiao, S. Z. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem., Int. Ed. 2016, 55, 1138–1142.Google Scholar
  222. [222]
    Li, H. Y.; Hou, Y.; Wang, F. X.; Lohe, M. R.; Zhuang, X. D.; Niu, L.; Feng, X. L. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv. Energy Mater. 2017, 7, 1601847.Google Scholar
  223. [223]
    Ling, Z.; Ren, C. E.; Zhao, M. Q.; Yang, J.; Giammarco, J. M.; Qiu, J. S.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA. 2014, 111, 16676–16681.Google Scholar
  224. [224]
    Wang, L. B.; Zhang, H.; Wang, B.; Shen, C. J.; Zhang, C. X.; Hu, Q. K.; Zhou, A. G.; Liu, B. Z. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron. Mater. Lett. 2016, 12, 702–710.Google Scholar
  225. [225]
    Halim, J.; Kota, S.; Lukatskaya, M. R.; Naguib, M.; Zhao, M. Q.; Moon, E. J.; Pitock, J.; Nanda, J.; May, S. J.; Gogotsi, Y. et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 2016, 26, 3118–3127.Google Scholar
  226. [226]
    Come, J.; Naguib, M.; Rozier, P.; Barsoum, M. W.; Gogotsi, Y.; Taberna, P. L.; Morcrette, M.; Simon, P. A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode. J. Electrochem. Soc. 2012, 159, A1368–A1373.Google Scholar
  227. [227]
    Dall’Agnese, Y.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors. J. Phys. Chem. Lett. 2015, 6, 2305–2309.Google Scholar
  228. [228]
    Wang, X. F.; Kajiyama, S.; Iinuma, H.; Hosono, E.; Oro, S.; Moriguchi, I.; Okubo, M.; Yamada, A. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 2015, 6, 6544.Google Scholar
  229. [229]
    Xie, Y.; Dall’Agnese, Y.; Naguib, M.; Gogotsi, Y.; Barsoum, M. W.; Zhuang, H. L.; Kent, P. R. C. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 2014, 8, 9606–9615.Google Scholar
  230. [230]
    Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 3907–3911.Google Scholar
  231. [231]
    Boota, M.; Anasori, B.; Voigt, C.; Zhao, M. Q.; Barsoum, M. W.; Gogotsi, Y. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 2016, 28, 1517–1522.Google Scholar
  232. [232]
    Kajiyama, S.; Szabova, L.; Sodeyama, K.; Iinuma, H.; Morita, R.; Gotoh, K.; Tateyama, Y.; Okubo, M.; Yamada A. Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano 2016, 10, 3334–3341.Google Scholar
  233. [233]
    Jiang, Q.; Wu, C. S.; Wang, Z. J.; Wang, A. C.; He, J. H.; Wang, Z. L.; Alshareef, H. N. MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit. Nano Energy 2018, 45, 266–272.Google Scholar
  234. [234]
    Ma, Z. Y.; Zhou, X. F.; Deng, W.; Lei, D.; Liu, Z. P. 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl. Mater. Interfaces 2018, 10, 3634–3643.Google Scholar
  235. [235]
    Pourali, Z.; Sovizi, M. R.; Yaftian, M. R. Two-dimensional Ti3C2Tx/CMK-5 nanocomposite as high performance anodes for lithium batteries. J. Alloys Compd. 2018, 738, 130–137.Google Scholar
  236. [236]
    Wang, J. J.; Dong, S. Y.; Li, H. S.; Chen, Z. J.; Jiang, S. B.; Wu, L. Y.; Zhang, X. G. Facile synthesis of layered Li4Ti5O12-Ti3C2Tx (MXene) composite for high-performance lithium ion battery. J. Electroanal. Chem. 2018, 810, 27–33.Google Scholar
  237. [237]
    Wu, Y. T.; Nie, P.; Wu, L. Y.; Dou, H.; Zhang, X. G. 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries. Chem. Eng. J. 2018, 334, 932–938.Google Scholar
  238. [238]
    Yu, P.; Cao, G. J.; Yi, S.; Zhang, X.; Li, C.; Sun, X. Z.; Wang, K.; Ma, Y. W. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale 2018, 10, 5906–5913.Google Scholar
  239. [239]
    Zhang, C. F.; Kremer, M. P.; Seral-Ascaso, A.; Park, S. H.; McEvoy, N.; Anasori, B.; Gogotsi, Y.; Nicolosi, V. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv. Funct. Mater. 2018, 28, 1705506.Google Scholar
  240. [240]
    Zhang, Y. Q.; Guo, B. S.; Hu, L. Y.; Xu, Q. J.; Li, Y.; Liu, D. Y.; Xu, M. W. Synthesis of SnS nanoparticle-modified MXene (Ti3C2Tx) composites for enhanced sodium storage. J. Alloys Compd. 2018, 732, 448–453.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Byung-Moon Jun
    • 1
  • Sewoon Kim
    • 1
  • Jiyong Heo
    • 2
  • Chang Min Park
    • 3
  • Namguk Her
    • 2
  • Min Jang
    • 4
  • Yi Huang
    • 5
  • Jonghun Han
    • 2
    Email author
  • Yeomin Yoon
    • 1
    Email author
  1. 1.Department of Civil and Environmental EngineeringUniversity of South CarolinaColumbiaUSA
  2. 2.Department of Civil and Environmental EngineeringKorea Army Academy at Young-CheonGyeongbukRepublic of Korea
  3. 3.Department of Environmental EngineeringKyungpook National UniversityDaeguRepublic of Korea
  4. 4.Department of Environmental EngineeringKwangwoon UniversitySeoulRepublic of Korea
  5. 5.School of Engineering, Institute for Materials & Processes (IMP)The University of EdinburghEdinburghUK

Personalised recommendations