Nano Research

, Volume 12, Issue 2, pp 357–363 | Cite as

Li2FeSiO4/C hollow nanospheres as cathode materials for lithium-ion batteries

  • Shuiyun Shen
  • Yao Zhang
  • Guanghua Wei
  • Wansen Zhang
  • Xiaohui Yan
  • Guofeng Xia
  • Aiming Wu
  • Changchun Ke
  • Junliang Zhang
Research Article


Undoubtedly, it is imperative to figure out two stubborn issues concerning low electronic conductivity and sluggish lithium ion diffusion to promote the practical application of Li2FeSiO4 materials in lithium-ion battery (LIB) cathode. Herein, we report an innovative and simple strategy that combines a hydrothermal process with subsequent annealing to synthesize highly uniform Li2FeSiO4/C hollow nanospheres. During the hydrothermal process, polystyrene nanospheres are employed not only as the template but also, more tactfully, as carbon source to form amorphous carbon layers, which will function to enhance the electronic conductivity and restrict particle aggregations. The use of the LIB Li2FeSiO4/C hollow nanospheres as a LIB cathode delivers a desired stable capacity at each rate stage, and even at a high rate of 10 C, the hollow nanosphere cathode can present a specific discharge capacity as high as 50.5 mAh·g−1. After 100 cycles, the capacity retentions at 1 and 10 C remain as high as 93% and 72%, respectively. The superior electrochemical performance is believed to be related to special architectures of the Li2FeSiO4/C hollow nanosphere cathode.


Li2FeSiO4/C hollow nanospheres high performance cathode lithium-ion batteries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21503134 and 21406220), the Science Foundation of Ministry of Education of China (No. 413064); PSA Peugeot Citroёn (No.13H100000584); Shanghai Jiao Tong University New Faculty Startup Funds (No.14X10040061); and the Science and Technology Commission of Shanghai Municipality (No.15YF1406500).

Supplementary material

12274_2018_2223_MOESM1_ESM.pdf (1.7 mb)
Li2FeSiO4/C hollow nanospheres as cathode materials for lithium-ion batteries


  1. [1]
    Scrosati, B.; Hassoun, J.; Sun, Y.-K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295.CrossRefGoogle Scholar
  2. [2]
    Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.CrossRefGoogle Scholar
  3. [3]
    Goodenough, J. B.; Park, K.-S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.CrossRefGoogle Scholar
  4. [4]
    Jeong, G.; Kim, Y.-U.; Kim, H.; Kim, Y.-J.; Sohn, H.-J. Prospective materials and applications for Li secondary batteries. Energy Environ. Sci. 2011, 4, 1986–2002.CrossRefGoogle Scholar
  5. [5]
    Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264.CrossRefGoogle Scholar
  6. [6]
    Hayner, C. M.; Zhao, X.; Kung, H. H. Materials for rechargeable lithiumion batteries. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 445–471.CrossRefGoogle Scholar
  7. [7]
    Masquelier, C.; Croguennec, L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. 2013, 113, 6552–6591.CrossRefGoogle Scholar
  8. [8]
    Ellis, B. L.; Lee, K. T.; Nazar, L. F. Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 2010, 22, 691–714.CrossRefGoogle Scholar
  9. [9]
    Islam, M. S.; Dominko, R.; Masquelier, C.; Sirisopanaporn, C.; Armstrong, A. R.; Bruce, P. G. Silicate cathodes for lithium batteries: Alternatives to phosphates? J. Mater. Chem. 2011, 21, 9811–9818.CrossRefGoogle Scholar
  10. [10]
    Nishimura, S.; Hayase, S.; Kanno, R.; Yashima, M.; Nakayama, N.; Yamada, A. Structure of Li2FeSiO4. J. Am. Chem. Soc. 2008, 130, 13212–13213.CrossRefGoogle Scholar
  11. [11]
    Boulineau, A.; Sirisopanaporn, C.; Dominko, R.; Armstrong, A. R.; Brucec, P. G.; Masquelier, C. Polymorphism and structural defects in Li2FeSiO4. Dalton Trans. 2010, 39, 6310–6316.CrossRefGoogle Scholar
  12. [12]
    Ni, J. F.; Jiang, Y.; Bi, X. X.; Li, L.; Lu, J. Lithium iron orthosilicate cathode: Progress and perspectives. ACS Energy Lett. 2017, 2, 1771–1781.CrossRefGoogle Scholar
  13. [13]
    Bai, J. Y.; Gong, Z. L.; Lv, D. P.; Li, Y. X.; Zou, H.; Yang, Y. Nanostructured 0.8Li2FeSiO4/0.4Li2SiO3/C composite cathode material with enhanced electrochemical performance for lithium-ion batteries. J. Mater. Chem. 2012, 22, 12128–12132.CrossRefGoogle Scholar
  14. [14]
    Tan, R.; Yang, J. L.; Zheng, J. X.; Wang, K.; Lin, L. P.; Ji, S. P.; Liu, J.; Pan, F. Fast rechargeable all-solid-state lithium ion batteries with high capacity based on nano-sized Li2FeSiO4 cathode by tuning temperature. Nano Energy 2015, 16, 112–121.CrossRefGoogle Scholar
  15. [15]
    Ni, J. F.; Zhang, L.; Fu, S. D.; Savilov, S. V.; Aldoshin, S. M.; Lu, L. A review on integrating nano-carbons into polyanion phosphates and silicates for rechargeable lithium batteries. Carbon 2015, 92, 15–25.CrossRefGoogle Scholar
  16. [16]
    Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater., in press, DOI: 10.1007/s40843-018-9324-0.Google Scholar
  17. [17]
    Rangappa, D.; Murukanahally, K. D.; Tomai, T.; Unemoto, A.; Honma, I. Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-ion battery electrode. Nano Lett. 2012, 12, 1146–1151.CrossRefGoogle Scholar
  18. [18]
    Wu, X. Z.; Wang, X. M.; Zhang, Y. X. Nanowormlike Li2FeSiO4-C composites as lithium-ion battery cathodes with superior high-rate capability. ACS Appl. Mater. Interfaces 2013, 5, 2510–2516.CrossRefGoogle Scholar
  19. [19]
    Yang, J. L.; Kang, X. C.; He, D. P.; Zheng, A. M.; Pan, M.; Mu, S. C. Graphene activated 3D-hierarchical flower-like Li2FeSiO4 for high-performance lithium-ion batteries. J. Mater. Chem. A 2015, 3, 16567–16573.CrossRefGoogle Scholar
  20. [20]
    Xu, Y. M.; Shen, W.; Zhang, A. L.; Liu, H. M.; Ma, Z. F. Template-free hydrothermal synthesis of Li2FeSiO4 hollow spheres as cathode materials for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 12982–12990.CrossRefGoogle Scholar
  21. [21]
    Zhu, H.; Wu, X. Z.; Zan, L.; Zhang, Y. X. Three-dimensional macroporous graphene Li2FeSiO4 composite as cathode material for lithium-ion batteries with superior electrochemical performances. ACS Appl. Mater. Interfaces 2014, 6, 11724–11733.CrossRefGoogle Scholar
  22. [22]
    Zhang, L.; Ni, J. F.; Wang, W. C.; Guo, J.; Li, L. 3D porous hierarchical Li2FeSiO4/C for rechargeable lithium batteries. J. Mater. Chem. A 2015, 3, 11782–11786.CrossRefGoogle Scholar
  23. [23]
    Qiu, H. L.; Zhu, K.; Li, H. M.; Li, T. T.; Zhang, T.; Yue, H. J.; Wei, Y. J.; Du, F.; Wang, C. Z.; Chen, G. et al. Mesoporous Li2FeSiO4@ordered mesoporous carbon composites cathode material for lithium-ion batteries. Carbon 2015, 87, 365–373.CrossRefGoogle Scholar
  24. [24]
    Li, D. L.; Zhang, W.; Sun, R.; Yong, H.-T.-H.; Chen, G. Q.; Fan, X. Y.; Gou, L.; Mao, Y. Y.; Zhao, K.; Tian, M. Soft-template construction of three-dimensionally ordered inverse opal structure from Li2FeSiO4/C composite nanofibers for high-rate lithium-ion batteries. Nanoscale 2016, 8, 12202–12214.CrossRefGoogle Scholar
  25. [25]
    Ding, Z. P.; Liu, J. T.; Ji, R.; Zeng, X. H.; Yang, S. L.; Pan, A. Q.; Ivey, D. G.; Wei, W. F. Three-dimensionally ordered macroporous Li2FeSiO4/C composite as a high performance cathode for advanced lithium ion batteries. J. Power Sources 2016, 329, 297–304.CrossRefGoogle Scholar
  26. [26]
    Qi, G. G.; Wang, Y. B.; Estevez, L.; Switzer, A. K.; Duan, X. N.; Yang, X. F.; Giannelis, E. P. Facile and scalable synthesis of monodispersed spherical capsules with a mesoporous shell. Chem. Mater. 2010, 22, 2693–2695.CrossRefGoogle Scholar
  27. [27]
    Fan, W.; Zhang, C.; Tjiu, W. W.; Pramoda, K. P.; He, C. B.; Liu, T. X. Graphene-wrapped polyaniline hollow spheres as novel hybrid electrode materials for supercapacitor applications. ACS Appl. Mater. Interfaces 2013, 5, 3382–3391.CrossRefGoogle Scholar
  28. [28]
    Wang, X. J.; Feng, J.; Bai, Y. C.; Zhang, Q.; Yin, Y. D. Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 2016, 116, 10983–11060.CrossRefGoogle Scholar
  29. [29]
    Lv, D. P.; Bai, J. Y.; Zhang, P.; Wu, S. Q.; Li, Y. X.; Wen, W.; Jiang, Z.; Mi, J. X.; Zhu, Z. Z.; Yang, Y. Understanding the high capacity of Li2FeSiO4: In situ XRD/XANES study combined with first-principles calculations. Chem. Mater. 2013, 25, 2014–2020.CrossRefGoogle Scholar
  30. [30]
    Yang, J. L.; Kang, X. C.; Hu, L.; Gong, X.; Mu, S. C. Nanocrystalline- Li2FeSiO4 synthesized by carbon frameworks as an advanced cathode material for Li-ion batteries. J. Mater. Chem. A 2014, 2, 6870–6878.CrossRefGoogle Scholar
  31. [31]
    Zhang, L. L.; Duan, S.; Yang, X. L.; Liang, G.; Huang, Y. H.; Cao, X. Z.; Yang, J.; Li, M.; Croft, M. C.; Lewis, C. Insight into cobalt-doping in Li2FeSiO4 cathode material for lithium-ion battery. J. Power Sources 2015, 274, 194–202.CrossRefGoogle Scholar
  32. [32]
    Masese, T.; Orikasa, Y.; Tassel, C.; Kim, J.; Minato, T.; Arai, H.; Mori, T.; Yamamoto, K.; Kobayashi, Y.; Kageyama, H. et al. Relationship between phase transition involving cationic exchange and charge-discharge rate in Li2FeSiO4. Chem. Mater. 2014, 26, 1380–1384.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shuiyun Shen
    • 1
  • Yao Zhang
    • 1
  • Guanghua Wei
    • 2
  • Wansen Zhang
    • 1
  • Xiaohui Yan
    • 1
  • Guofeng Xia
    • 1
  • Aiming Wu
    • 1
  • Changchun Ke
    • 1
  • Junliang Zhang
    • 1
  1. 1.Institute of Fuel Cells, School of Mechanical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.SJTU-Paris Tech Elite Institute of TechnologyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations