Advertisement

Nano Research

, Volume 12, Issue 2, pp 315–322 | Cite as

Solvent polarity-induced photoluminescence enhancement (SPIPE): A method enables several-fold increase in quantum yield of silicon nanoparticles

  • Xiao-Bin Shen
  • Bin Song
  • Bei Fang
  • Xiao Yuan
  • You-Yong Li
  • Shun-Yi Wang
  • Shun-Jun JiEmail author
  • Yao HeEmail author
Research Article
  • 70 Downloads

Abstract

Fluorescent silicon nanoparticles (SiNPs) bring exciting opportunities for long-awaited silicon-based optical application, while intrinsic indirect band gap of silicon severely limits photoluminescent quantum yield (PLQY) of SiNPs. To address this critical issue, we herein demonstrate a facile and general method, i.e., solvent polarity-induced photoluminescence enhancement (SPIPE), yielding several-fold increase in quantum yield (QY) of SiNPs. Typically, different kinds of 4-substituented-1,8-naphthalic anhydride molecules, i.e., 4-Br-1,8-naphthalic anhydride (BNA), 4-triphenylamino-1,8-naphthalic anhydride (TPNA), and 4-dimethylamino-1,8-naphthalic anhydride (DMNA), are rationally designed and synthesized, which serve as surface ligands for the production of BNA-, TPNA-, and DMNA-capped small-sized (diameter: ~ 3.8–5.8 nm) SiNPs with QY of ~ 8%, ~ 15%, ~ 16%, respectively. Of particular significance, QY of the resultant SiNPs could be greatly enhanced from ~ 10% to ~ 50% through the SPIPE strategy. Taken together with the theoretical calculation and the results of time-correlated single photon counting, we reveal that actived excited-state charge transfer interactions between surface-covered ligand and silicon oxide coating would be responsible for the observed QY enhancement. Moreover, other five kinds of solvents (i.e., methanol, isopropanol, dimethyl sulfoxide, N,N-dimethylformamide, and acetonitrile) are further employed for the SiNPs treatment, and similar improvement of QY values are observed, convincingly demonstrating the universal evidence of SPIPE of the SiNPs.

Keywords

silicon nanoparticles quantum yield fluorescent surface ligand solvent polarity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Prof. Shuit-Tong Lee and Youyong Li’s general help and valuable suggestion in the computational studies. The authors appreciate financial support from the National Basic Research Program of China (973 Program) (Nos. 2013CB934400 and 2012CB932400), the National Natural Science Foundation of China (NSFC) (Nos. 21672157, 21542015, 21372174, 61361160412, and 31400860), the Ph.D. Programs Foundation of Ministry of Education of China (No. 20133201130004), the Project of Scientific and Technologic Infrastructure of Suzhou (No. SZS201708), and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC).

Supplementary material

12274_2018_2217_MOESM1_ESM.pdf (4.2 mb)
Solvent polarity-induced photoluminescence enhancement (SPIPE): A method enables several-fold increase in quantum yield of silicon nanoparticles

References

  1. [1]
    Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A. Tin-seeded silicon nanowires for high capacity Li-ion batteries. Chem. Mater. 2012, 24, 3738–3745.CrossRefGoogle Scholar
  2. [2]
    Philippe, B.; Dedryvère, R.; Gorgoi, M.; Rensmo, H.; Gonbeau, D.; Edström, K. Role of the LiPF6 salt for the long-term stability of silicon electrodes in Li-Ion batteries −a photoelectron spectroscopy study. Chem. Mater. 2013, 25, 394–404.CrossRefGoogle Scholar
  3. [3]
    Chiappini, C.; De Rosa, E.; Martinez, J. O.; Liu, X.; Steele, J.; Stevens, M. M.; Tasciotti, E. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat. Mater. 2015, 14, 532–539.CrossRefGoogle Scholar
  4. [4]
    Pavesi, L.; Dal Negro, L.; Mazzoleni, C.; Franzò, G.; Priolo, F. Optical gain in silicon nanocrystals. Nature 2000, 408, 440–444.CrossRefGoogle Scholar
  5. [5]
    Ciampi, S.; Harper, J. B.; Gooding, J. J. Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of Si–C bonds: Surface preparation, passivation and functionalization. Chem. Soc. Rev. 2010, 39, 2158–2183.CrossRefGoogle Scholar
  6. [6]
    Song, B.; Zhong Y. L.; Wu, S. C.; Chu, B. B.; Su, Y. Y.; He, Y. Onedimensional fluorescent silicon nanorods featuring ultrahigh photostability, favorable biocompatibility, and excitation wavelength-dependent emission spectra. J. Am. Chem. Soc., 2016, 138, 4824–4831.CrossRefGoogle Scholar
  7. [7]
    Jiang, A. R.; Song, B.; Ji, X. Y.; Peng, F.; Wang, H. Y.; Su, Y. Y.; He, Y. Doxorubicin-loaded silicon nanoparticles impregnated into red blood cells featuring bright fluorescence, strong photostability, and lengthened blood residency. Nano Res. 2018, 11, 2285–2294.CrossRefGoogle Scholar
  8. [8]
    Zhou, Y. F.; Zhang, Y.; Zhong, Y. L.; Fu, R.; Wu, S. C.; Wang, Q.; Wang, H. Y.; Su, Y. Y.; Zhang, H. M.; He, Y. The in vivo targeted molecular imaging of fluorescent silicon nanoparticles in Caenorhabditis elegans. Nano Res. 2018, 11, 2336–2346.CrossRefGoogle Scholar
  9. [9]
    Cheng, X. Y.; Lowe, S. B.; Reece, P. J.; Gooding, J. J. Colloidal silicon quantum dots: From preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem. Soc. Rev. 2014, 43, 2680–2700.CrossRefGoogle Scholar
  10. [10]
    McVey, B. F. P.; Tilley, R. D. Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals. Acc. Chem. Res. 2014, 47, 3045–3051.CrossRefGoogle Scholar
  11. [11]
    Dasog, M.; Kehrle, J.; Rieger, B.; Veinot, J. G. C. Silicon nanocrystals and silicon-polymer hybrids: Synthesis, surface engineering, and applications. Angew. Chem., Int. Ed. 2016, 55, 2322–2339.CrossRefGoogle Scholar
  12. [12]
    Kafshgari, M. H.; Delalat, B.; Tong, W. Y.; Harding, F. J. Kaasalainen, M.; Salonen, J.; Voelcker, N. H. Oligonucleotide delivery by chitosanfunctionalized porous silicon nanoparticles. Nano Res. 2015, 8, 2033–2046.CrossRefGoogle Scholar
  13. [13]
    Ni, Z. Y.; Pi, X. D.; Cottenier, S.; Yang, D. R. Density functional theory study on the B doping and B/P Codoping of Si nanocrystals embedded in SiO2. Phys. Rev. B 2017, 95, 075307.CrossRefGoogle Scholar
  14. [14]
    Canham, L. T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 1990, 57, 1046–1048.CrossRefGoogle Scholar
  15. [15]
    Cullis, A. G.; Canham, L. T. Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 1991, 353, 335–338.CrossRefGoogle Scholar
  16. [16]
    Godefroo, S.; Hayne, M.; Jivanescu, M.; Stesmans, A.; Zacharias, M.; Lebedev, O. I.; Van Tendeloo, G.; Moshchalkov, V. V. Classification and control of the origin of photoluminescence from Si nanocrystals. Nat. Nanotechnol. 2008, 3, 174–178.CrossRefGoogle Scholar
  17. [17]
    Anthony, R. J.; Rowe, D. J.; Stein, M.; Yang, J. H.; Kortshagen, U. Routes to achieving high quantum yield luminescence from gas-phase-produced silicon nanocrystals. Adv. Funct. Mater. 2011, 21, 4042–4046.CrossRefGoogle Scholar
  18. [18]
    Li, Q.; He, Y.; Chang, J.; Wang, L.; Chen, H. Z.; Tan, Y. W.; Wang, H. Y.; Shao, Z. Z. Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature. J. Am. Chem. Soc. 2013, 135, 14924–14927.CrossRefGoogle Scholar
  19. [19]
    Lauerhaas, J. M.; Sailor, M. J. Chemical modification of the photoluminescence quenching of porous silicon. Science 1993, 261, 1567–1568.CrossRefGoogle Scholar
  20. [20]
    Lauerhaas, J. M., Credo, G. M.; Heinrich, J. L.; Sailor, M. J. Reversible luminescence quenching of porous silicon by solvents. J. Am. Chem. Soc. 1992, 114, 1911–1912.CrossRefGoogle Scholar
  21. [21]
    Zhong, Y. L.; Peng, F.; Bao, F.; Wang, S. Y.; Ji, X. Y.; Yang, L.; Su, Y. Y.; Lee, S. T.; He, Y. Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J. Am. Chem. Soc. 2013, 135, 8350–8356.CrossRefGoogle Scholar
  22. [22]
    Li, Q.; Luo, T. Y.; Zhou, M.; Abroshan, H.; Huang, J. C.; Kim, H. J.; Rosi, N. L.; Shao, Z. Z.; Jin, R. C. Silicon nanoparticles with surface nitrogen: 90% quantum yield with narrow luminescence bandwidth and the ligand structure based energy law. ACS Nano 2016, 10, 8385–8393.CrossRefGoogle Scholar
  23. [23]
    Lillo, C. R.; Romero, J. J.; Portolés, M. L.; Diez, R. P.; Caregnato, P.; Gonzalez, M. C. Organic coating of 1–2-nm-size silicon nanoparticles: Effect on particle properties. Nano Res. 2015, 8, 2047–2062.CrossRefGoogle Scholar
  24. [24]
    He, Y.; Zhong, Y. L.; Peng, F.; Wei, X. P.; Su, Y. Y.; Lu, Y. M.; Su, S.; Gu, W.; Liao, L. S.; Lee, S. T. One-pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots. J. Am. Chem. Soc. 2011, 133, 14192–14195.CrossRefGoogle Scholar
  25. [25]
    Ji, X. Y.; Peng, F.; Zhong, Y. L.; Su, Y. Y.; Jiang, X. X.; Song, C. X.; Yang, L.; Chu, B. B.; Lee, S. T.; He, Y. Highly fluorescent, photostable, and ultrasmall silicon drug nanocarriers for long-term tumor cell tracking and in-vivo cancer therapy. Adv. Mater. 2015, 27, 1029–1034.CrossRefGoogle Scholar
  26. [26]
    Wu, S. C.; Zhong, Y. L.; Zhou, Y. F.; Song, B.; Chu, B. B.; Ji, X. Y.; Wu, Y. Y.; Su, Y. Y.; He, Y. Biomimetic preparation and dual-color bioimaging of fluorescent silicon nanoparticles. J. Am. Chem. Soc. 2015, 137, 14726–14732.CrossRefGoogle Scholar
  27. [27]
    Prendergast, D.; Grossman, J. C.; Williamson, A. J.; Fattebert, J. L.; Galli, G. Optical properties of silicon clusters in the presence of water: A first principles theoretical analysis. J. Am. Chem. Soc. 2004, 126, 13827–13837.CrossRefGoogle Scholar
  28. [28]
    Gerbec, J. A.; Magana, D.; Washington, A.; Strouse, G. F. Microwaveenhanced reaction rates for nanoparticle synthesis. J. Am. Chem. Soc. 2005, 127, 15791–15800.CrossRefGoogle Scholar
  29. [29]
    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.CrossRefGoogle Scholar
  30. [30]
    Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.CrossRefGoogle Scholar
  31. [31]
    Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.CrossRefGoogle Scholar
  32. [32]
    Perdew, J. P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533–16539.CrossRefGoogle Scholar
  33. [33]
    Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.CrossRefGoogle Scholar
  34. [34]
    Malinge, J.; Allain, C.; Brosseau, A.; Audebert, P. White fluorescence from core–shell silica nanoparticles. Angew. Chem., Int. Ed. 2012, 51, 8534–8537.CrossRefGoogle Scholar
  35. [35]
    Cai, Y. S.; Guo, Z. Q.; Chen, J. M.; Li, W. L.; Zhong, L. B.; Gao, Y.; Jiang, L.; Chi, L. F.; Tian, H.; Zhu, W. H. Enabling light work in helical self-assembly for dynamic amplification of chirality with photoreversibility. J. Am. Chem. Soc. 2016, 138, 2219–2224.CrossRefGoogle Scholar
  36. [36]
    Fellah, S.; Ozanam, F.; Gabouze, N.; Chazalviel, J. N. Porous silicon in solvents: Constant-lifetime PL quenching and confirmation of dielectric effects. Phys. Stat. Sol. (a) 2000, 182, 367–372.CrossRefGoogle Scholar
  37. [37]
    Tang, Y. H.; Kong, X. Q.; Xu, A.; Dong, B. L.; Lin, W. Y. Development of a two-photon fluorescent probe for imaging of endogenous formaldehyde in living tissues. Angew. Chem., Int. Ed. 2016, 55, 3356–3359.CrossRefGoogle Scholar
  38. [38]
    Purkait, T. K.; Iqbal, M.; Wahl, M. H.; Gottschling, K.; Gonzalez, C. M.; Islam, M. A.; Veinot, J. G. C. Borane-catalyzed room-temperature hydrosilylation of alkenes/alkynes on silicon nanocrystal surfaces. J. Am. Chem. Soc. 2014, 136, 17914–17917.CrossRefGoogle Scholar
  39. [39]
    Housecroft, C. E.; Sharpe, A. G. Inorganic Chemistry; 2nd ed. Pearson: Essex, England, 2005.Google Scholar
  40. [40]
    Dasog, M.; Yang, Z. Y.; Regli, S.; Atkins, T. M.; Faramus, A.; Singh, M. P.; Muthuswamy, E.; Kauzlarich, S. M.; Tilley, R. D.; Veinot, J. G. C. Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals. ACS Nano 2013, 7, 2676–2685.CrossRefGoogle Scholar
  41. [41]
    Margalias, A.; Seintis, K.; Yigit, M. Z.; Can, M.; Sygkridou, D.; Giannetas, V.; Fakis, M.; Stathatos, E. The effect of additional electron donating group on the photophysics and photovoltaic performance of two new metal free D-π-A sensitizers. Dyes Pigments 2015, 121, 316–327.CrossRefGoogle Scholar
  42. [42]
    Mastronardi, M. L.; Maier-Flaig, F.; Faulkner, D.; Henderson, E. J.; Kubel, C.; Lemmer, U.; Ozin, G. A. Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals. Nano Lett. 2012, 12, 337–342.CrossRefGoogle Scholar
  43. [43]
    Miller, J. B.; Van Sickle, A. R.; Anthony, R. J.; Kroll, D. M.; Kortshagen, U. R.; Hobbie, E. K. Ensemble brightening and enhanced quantum yield in size-purified silicon nanocrystals. ACS Nano 2012, 6, 7389–7396.CrossRefGoogle Scholar
  44. [44]
    Hessel, C. M.; Reid, D.; Panthani, M. G.; Rasch, M. R.; Goodfellow, B. W.; Wei, J. W.; Fujii, H.; Akhavan, V.; Korgel, B. A. Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths. Chem. Mater. 2012, 24, 393–401.CrossRefGoogle Scholar
  45. [45]
    Kim, D.; Zuidema, J. M.; Kang, J. Y.; Pan, Y. L.; Wu, L. B.; Warther, D.; Arkles, B.; Sailor, M. J. Facile surface modification of hydroxylated silicon nanostructures using heterocyclic silanes. J. Am. Chem. Soc. 2016, 138, 15106–15109.CrossRefGoogle Scholar
  46. [46]
    Islam, A.; Cheng, C. C.; Chi, S. H.; Lee, S. J.; Hela, P. G.; Chen, I. C.; Cheng, C. H. Aminonaphthalic anhydrides as red-emitting materials: Electroluminescence, crystal structure, and photophysical properties. J. Phys. Chem. B 2005, 109, 5509–5517.CrossRefGoogle Scholar
  47. [47]
    Stolle, C. J.; Lu, X. T.; Yu, Y. X.; Schaller, R. D.; Korgel, B. A. Efficient carrier multiplication in colloidal silicon nanorods. Nano Lett. 2017, 17, 5580–5586.CrossRefGoogle Scholar
  48. [48]
    Ferreira, R.; Remón, P.; Pischel, U. Multivalued logic with a tristable fluorescent switch. J. Phys. Chem. C 2009, 113, 5805–5811.CrossRefGoogle Scholar
  49. [49]
    Sangghaleh, F.; Sychugov, I.; Yang, Z. Y.; Veinot, J. G. C.; Linnros, J. Near-unity internal quantum efficiency of luminescent silicon nanocrystals with ligand passivation. ACS Nano 2015, 9, 7097–7104.CrossRefGoogle Scholar
  50. [50]
    Fuzell, J.; Thibert, A.; Atkins, T. M.; Dasog, M.; Busby, E.; Veinot, J. G. C.; Kauzlarich, S. M.; Larsen, D. S. Red states versus blue states in colloidal silicon nanocrystals: exciton sequestration into low-density traps. J. Phys. Chem. Lett. 2013, 4, 3806–3812.CrossRefGoogle Scholar
  51. [51]
    Ajayi, O. A.; Anderson, N. C.; Cotlet, M.; Petrone, N.; Gu, T.; Wolcott, A.; Gesuele, F.; Hone, J.; Owen, J. S.; Wong, C. W. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene. Appl. Phys. Lett. 2014, 104, 171101.CrossRefGoogle Scholar
  52. [52]
    Dasog, M.; De los Reyes, G. B.; Titova, L. V.; Hegmann, F. A.; Veinot, J. G. C. Size vs. surface: Tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. ACS Nano 2014, 8, 9636–9648.CrossRefGoogle Scholar
  53. [53]
    De los Reyes, G. B.; Dasog, M.; Na, M. X.; Titova, L. V.; Veinot, J. G. C.; Hegmann, F. A. Charge transfer state emission dynamics in blue-emitting functionalized silicon nanocrystals. Phys. Chem. Chem. Phys. 2015, 17, 30125–30133.CrossRefGoogle Scholar
  54. [54]
    Wang, L.; Li, Q.; Wang, H. Y.; Huang, J. C.; Zhang, R.; Chen, Q. D.; Xu, H. L.; Han, W.; Shao, Z. Z.; Sun, H. B. Ultrafast optical spectroscopy of surface-modified silicon quantum dots: unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence. Light: Sci. Appl. 2015, 4, e245.CrossRefGoogle Scholar
  55. [55]
    Resch, U.; Eychmueller, A.; Haase, M.; Weller, H. Absorption and fluorescence behavior of redispersible cadmium sulfide colloids in various organic solvents. Langmuir 1992, 8, 2215–2218.CrossRefGoogle Scholar
  56. [56]
    Silvera-Batista, C. A.; Wang, R. K.; Weinberg, P.; Ziegler, K. J. Solvatochromic shifts of single-walled carbon nanotubes in nonpolar microenvironments. Phys. Chem. Chem. Phys. 2010, 12, 6990–6998.CrossRefGoogle Scholar
  57. [57]
    Larsen, B. A.; Deria, P.; Holt, J. M.; Stanton, I. N.; Heben, M. J.; Therien, M. J.; Blackburn, J. L. Effect of solvent polarity and electrophilicity on quantum yields and solvatochromic shifts of single-walled carbon nanotube photoluminescence. J. Am. Chem. Soc. 2012, 134, 12485–12491.CrossRefGoogle Scholar
  58. [58]
    Sunahara, H.; Urano, Y.; Kojima, H.; Nagano, T. Design and synthesis of a library of BODIPY-based environmental polarity sensors utilizing photoinduced electron-transfer-controlled fluorescence on/off switching. J. Am. Chem. Soc. 2007, 129, 5597–5604.CrossRefGoogle Scholar
  59. [59]
    Signore, G.; Nifosi, R.; Albertazzi, L.; Storti, B.; Bizzarri, R. Polaritysensitive coumarins tailored to live cell imaging. J. Am. Chem. Soc. 2010, 132, 1276–1288.CrossRefGoogle Scholar
  60. [60]
    Wiedbrauk, S.; Maerz, B.; Samoylova, E.; Reiner, A.; Trommer, F.; Mayer, P.; Zinth, W.; Dube, H. Twisted hemithioindigo photoswitches: Solvent polarity determines the type of light-induced rotations. J. Am. Chem. Soc. 2016, 138, 12219–12227.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Nanoscale Biochemical Analysis, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC)Soochow UniversitySuzhouChina
  2. 2.Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouChina

Personalised recommendations