Nano Research

, Volume 12, Issue 2, pp 281–287 | Cite as

High performance octahedral PtNi/C catalysts investigated from rotating disk electrode to membrane electrode assembly

  • Bing Li
  • Jue Wang
  • Xin Gao
  • Congwei Qin
  • Daijun Yang
  • Hong Lv
  • Qiangfeng XiaoEmail author
  • Cunman ZhangEmail author
Research Article


Octahedral PtNi/C catalysts have demonstrated superior catalytic performance in oxygen reduction reaction (ORR) over commercial Pt/C with rotating disk electrode (RDE). However, it is not trivial to translate such promising results to real-world membrane-electrode assembly (MEA). In this work, we have synthesized octahedral PtNi/C catalysts using poly(diallyldimethylammonium chloride) (PDDA) as a capping agent and investigated their performance from RDE to MEA. In RDE, mass activity and specific activity of the optimized octahedral PtNi/C catalyst for oxygen reduction reaction (ORR) are nearly 19 and 28 times high of the state-of-the-art commercial Pt/C, respectively. At MEA level, the octahedral PtNi/C catalyst exhibits excellent power generation performance and durability paired with commercial Pt/C anode. Its cell voltage at 1,000 mA·cm−2 reaches 0.712 V, and maximum power density is 881.6 mW·cm−2 and its performance attenuation is also less, around 11.8% and 7% under galvanostatic condition of 1,000 mA·cm−2 for 100 h. Such results are investiaged by thermodynamic analysis and fundametal performance modeling, which indicate the single cell performance can be further improved by reducing the size of PtNi/C catalyst agglomerates. Such encouraging results have demonstrated the feasibility to convey the superior performance of octahedral PtNi/C from RDE to MEA.


proton exchange membrane fuel cell (PEMFC) octahedral PtNi/C oxygen reduction reaction (ORR) durability membrane electrode assembly (MEA) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors appreciate the National Natural Science Foundation of China (No. 21676204) and the Program of Ministry of Science & Technology of China (No. 2018YFB0106503) for financial support.

Supplementary material

12274_2018_2211_MOESM1_ESM.pdf (4.7 mb)
High performance octahedral PtNi/C catalysts investigated from rotating disk electrode to membrane electrode assembly


  1. [1]
    Colón-Mercado, H. R.; Popov, B. N. Stability of platinum based alloy cathode catalysts in PEM fuel cells. J. Power Sources 2006, 155, 253–263.CrossRefGoogle Scholar
  2. [2]
    Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.CrossRefGoogle Scholar
  3. [3]
    Larminie, J.; Dicks, A. Fuel Cell Systems Explained; 2nd ed. London, UK: Wiley, 2003.CrossRefGoogle Scholar
  4. [4]
    Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B: Environ. 2005, 56, 9–35.CrossRefGoogle Scholar
  5. [5]
    Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1443.CrossRefGoogle Scholar
  6. [6]
    Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.CrossRefGoogle Scholar
  7. [7]
    Shao, Y. Y.; Cheng, Y. W.; Duan, W. T.; Wang, W.; Lin, Y. H.; Wang, Y.; Liu, J. Nanostructured electrocatalysts for PEM fuel cells and redox flow batteries: A selected review. ACS Catal. 2015, 5, 7288–7298.CrossRefGoogle Scholar
  8. [8]
    Wang, J.; Li, B.; Yersak, T.; Yang, D. J.; Xiao, Q. F.; Zhang, J. L.; Zhang, C. M. Recent advances in Pt-based octahedral nanocrystals as high performance fuel cell catalysts. J. Mater. Chem. A 2016, 4, 11559–11581.CrossRefGoogle Scholar
  9. [9]
    Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.CrossRefGoogle Scholar
  10. [10]
    Cui, C. H.; Gan, L.; Li, H. H.; Yu, S. H.; Heggen, M.; Strasser, P. Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 2012, 12, 5885–5889.CrossRefGoogle Scholar
  11. [11]
    Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765–771.CrossRefGoogle Scholar
  12. [12]
    Huang, X. Q.; Zhao, Z. P.; Chen, Y.; Zhu, E. B.; Li, M. F.; Duan, X. F.; Huang, Y. A rational design of carbon-supported dispersive Pt-based octahedra as efficient oxygen reduction reaction catalysts. Energy Environ. Sci. 2014, 7, 2957–2962.CrossRefGoogle Scholar
  13. [13]
    Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, M. Y. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.CrossRefGoogle Scholar
  14. [14]
    Chu, Y. Y.; Wang, Z. B.; Dai, Z.; Gu, D. M.; Yin, G. P. Synthesis of truncated-octahedral Pt-Pd nanocrystals supported on carbon black as a highly efficient catalyst for methanol oxidation. Fuel Cells 2014, 14, 49–55.CrossRefGoogle Scholar
  15. [15]
    Dai, L.; Zhao, Y. X.; Chi, Q.; Liu, H. F.; Li, J. L.; Huang, T. Morphological control and evolution of octahedral and truncated trisoctahedral Pt-Au alloy nanocrystals under microwave irradiation. Nanoscale 2014, 6, 9944–9950.CrossRefGoogle Scholar
  16. [16]
    Zhang, C. L.; Hwang, S. Y.; Peng, Z. M. Size-dependent oxygen reduction property of octahedral Pt-Ni nanoparticle electrocatalysts. J. Mater. Chem. A 2014, 2, 19778–19787.CrossRefGoogle Scholar
  17. [17]
    Zhang, C. L.; Sandorf, W.; Peng, Z. M. Octahedral Pt2CuNi uniform alloy nanoparticle catalyst with high activity and promising stability for oxygen reduction reaction. ACS Catal. 2015, 5, 2296–2300.CrossRefGoogle Scholar
  18. [18]
    Prabhuram, J.; Wang, X.; Hui, C. L.; Hsing, I. M. Synthesis and characterization of surfactant-stabilized Pt/C nanocatalysts for fuel cell applications. J. Phys. Chem. B 2003, 107, 11057–11064.CrossRefGoogle Scholar
  19. [19]
    Zeng, J.; Zheng, Y. Q.; Rycenga, M.; Tao, J.; Li, Z. Y.; Zhang, Q.; Zhu, Y. M.; Xia, Y. N. Controlling the shapes of silver nanocrystals with different capping agents. J. Am. Chem. Soc. 2010, 132, 8552–8553.CrossRefGoogle Scholar
  20. [20]
    Lim, B.; Xiong, Y. J.; Xia, Y. N. A water-based synthesis of octahedral, decahedral, and icosahedral Pd nanocrystals. Angew. Chem., Int. Ed. 2007, 119, 9439–9442.CrossRefGoogle Scholar
  21. [21]
    Sakamoto, R.; Omichi, K.; Furuta, T.; Ichikawa, M. Effect of high oxygen reduction reaction activity of octahedral PtNi nanoparticle electrocatalysts on proton exchange membrane fuel cell performance. J. Power Sources 2014, 269, 117–123.CrossRefGoogle Scholar
  22. [22]
    Gu, W.; Baker, D. R.; Liu, Y.; Gasteiger, H. A. Proton Exchange Membrane Fuel Cell (PEMFC) Down-the-channel Performance Model. In Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics and Durability. Vielstich, W.; Gasteiger, H. A.; Yokokawa, H., Eds.; John Wiley & Sons: Chichester, 2009; pp 631–657.CrossRefGoogle Scholar
  23. [23]
    Weber, A. Z.; Borup, R. L.; Darling, R. M.; Das, P. K.; Dursch, T. J.; Gu, W. B.; Harvey, D.; Kusoglu, A.; Litster, S.; Mench, M. M. et al. A critical review of modeling transport phenomena in polymer-electrolyte fuel cells. J. Electrochem. Soc. 2014, 161, F1254–F1299.CrossRefGoogle Scholar
  24. [24]
    Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data; Minnesota: Perkin-Elmer Corporation, 1992.Google Scholar
  25. [25]
    Corcoran, C. J.; Tavassol, H.; Rigsby, M. A.; Bagus, P. S.; Wieckowski, A. Application of XPS to study electrocatalysts for fuel cells. J. Power Sources 2010, 195, 7856–7879.CrossRefGoogle Scholar
  26. [26]
    Zhu, S. Y.; Zheng, J. S.; Huang, J.; Dai, N. N.; Li, P.; Zheng, J. P. Fabrication of three-dimensional buckypaper catalyst layer with Pt nanoparticles supported on polyelectrolyte functionalized carbon nanotubes for proton exchange membrane fuel cells. J. Power Sources 2018, 393, 19–31.CrossRefGoogle Scholar
  27. [27]
    Lin, G. Y.; Trung. V. N. Effect of thickness and hydrophobic polymer content of the gas diffusion layer on electrode flooding level in a PEMFC. J. Electrochem. Soc. 2005, 152, A1942–A1948.CrossRefGoogle Scholar
  28. [28]
    Williams, M. V.; Begg, E.; Bonville, L.; Kunz, H. R.; Fenton, J. M. Characterization of gas diffusion layers for PEMFC. J. Electrochem. Soc. 2004, 151, A1173–A1180.CrossRefGoogle Scholar
  29. [29]
    Khandelwal, M.; Mench, M. M. Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials. J. Power Sources 2006, 161, 1106–1115.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Automotive Studies & Clean Energy Automotive Engineering CenterTongji University (Jiading Campus)ShanghaiChina
  2. 2.Department of Energy TechnologyAalborg UniversityAalborgDenmark

Personalised recommendations