Nano Research

, Volume 12, Issue 1, pp 25–31 | Cite as

In situ observation of synthesized nanoparticles in ultra-dilute aerosols via X-ray scattering

  • Sarah R. McKibbinEmail author
  • Sofie Yngman
  • Olivier Balmes
  • Bengt O. Meuller
  • Simon Tågerud
  • Maria E. Messing
  • Giuseppe Portale
  • Michael Sztucki
  • Knut Deppert
  • Lars Samuelson
  • Martin H. Magnusson
  • Edvin Lundgren
  • Anders MikkelsenEmail author
Open Access
Research Article


In-air epitaxy of nanostructures (Aerotaxy) has recently emerged as a viable route for fast, large-scale production. In this study, we use small-angle X-ray scattering to perform direct in-flight characterizations of the first step of this process, i.e., the engineered formation of Au and Pt aerosol nanoparticles by spark generation in a flow of N2 gas. This represents a particular challenge for characterization because the particle density can be extremely low in controlled production. The particles produced are examined during production at operational pressures close to atmospheric conditions and exhibit a lognormal size distribution ranging from 5–100 nm. The Au and Pt particle production and detection are compared. We observe and characterize the nanoparticles at different stages of synthesis and extract the corresponding dominant physical properties, including the average particle diameter and sphericity, as influenced by particle sintering and the presence of aggregates. We observe highly sorted and sintered spherical Au nanoparticles at ultra-dilute concentrations (< 5 × 105 particles/cm3) corresponding to a volume fraction below 3 × 10–10, which is orders of magnitude below that of previously measured aerosols. We independently confirm an average particle radius of 25 nm via Guinier and Kratky plot analysis. Our study indicates that with high-intensity synchrotron beams and careful consideration of background removal, size and shape information can be obtained for extremely low particle concentrations with industrially relevant narrow size distributions.


aerosol nanoparticle synthesis in situ analysis small-angle X-ray scattering Aerotaxy 



This work was performed within Nanolund at Lund University, and was supported by the Knut and Alice Wallenberg Foundation, the Swedish Research Council (VR) and the Swedish Foundation for Strategic Research (SSF). The Dutch Organization for Scientific Research (NWO) and the ESRF are acknowledged for providing beamtime for this project.

Supplementary material

12274_2018_2170_MOESM1_ESM.pdf (1.7 mb)
In situ observation of synthesized nanoparticles in ultra-dilute aerosols via X-ray scattering


  1. [1]
    Buseck, P. R.; Adachi, K. Nanoparticles in the atmosphere. Elements 2008, 4, 389–394.CrossRefGoogle Scholar
  2. [2]
    Strobel, R.; Pratsinis, S. E. Flame aerosol synthesis of smart nanostructured materials. J. Mater. Chem. 2007, 17, 4743–4756.CrossRefGoogle Scholar
  3. [3]
    Heurlin, M.; Magnusson, M. H.; Lindgren, D.; Ek, M.; Wallenberg, L. R.; Deppert, K.; Samuelson, L. Continuous gas-phase synthesis of nanowires with tunable properties. Nature 2012, 492, 90–94.CrossRefGoogle Scholar
  4. [4]
    Magnusson, M. H.; Ohlsson, B. J.; Björk, M. T.; Dick, K. A.; Borgström, M. T.; Deppert, K.; Samuelson, L. Semiconductor nanostructures enabled by aerosol technology. Front. Phys. 2014, 9, 398–418.CrossRefGoogle Scholar
  5. [5]
    Beaucage, G.; Kammler, H. K.; Mueller, R.; Strobel, R.; Agashe, N.; Pratsinis, S. E.; Narayanan, T. Probing the dynamics of nanoparticle growth in a flame using synchrotron radiation. Nat. Mater. 2004, 3, 370–374.CrossRefGoogle Scholar
  6. [6]
    Zhang, R. Y.; Khalizov, A. F.; Pagels, J.; Zhang, D.; Xue, H. X.; McMurry, P. H. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing. Proc. Natl. Acad. Sci. USA 2008, 105, 10291–10296.CrossRefGoogle Scholar
  7. [7]
    Loh, N. D.; Hampton, C. Y.; Martin, A. V.; Starodub, D.; Sierra, R. G.; Barty, A.; Aquila, A.; Schulz, J.; Lomb, L.; Steinbrener, J. et al. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature 2012, 486, 513–517.CrossRefGoogle Scholar
  8. [8]
    Schnadt, J.; Knudsen, J.; Andersen, J. N.; Siegbahn, H.; Pietzsch, A.; Hennies, F.; Johansson, N.; Mårtensson, N.; Öhrwall, G.; Bahr, S. et al. The new ambient-pressure X-ray photoelectron spectroscopy instrument at MAX-lab. J. Synchrotron Radiat. 2012, 19, 701–704.CrossRefGoogle Scholar
  9. [9]
    Liu, X. S.; Yang, W. L.; Liu, Z. Recent progress on synchrotron-based in-situ soft X-ray spectroscopy for energy materials. Adv. Mater. 2014, 26, 7710–7729.CrossRefGoogle Scholar
  10. [10]
    Ingham, B. X-ray scattering characterisation of nanoparticles. Crystallogr. Rev. 2015, 21, 229–303.CrossRefGoogle Scholar
  11. [11]
    Wysocka, I.; Kowalska, E.; Trzciński, K.; Łapiński, M.; Nowaczyk, G.; Zielińska-Jurek, A. UV-vis-induced degradation of phenol over magnetic photocatalysts modified with Pt, Pd, Cu and Au nanoparticles. Nanomaterials 2018, 8, 28.CrossRefGoogle Scholar
  12. [12]
    Lu, Y. F.; Fan, H. Y.; Stump, A.; Ward, T. L.; Rieker, T.; Brinker, C. J. Aerosol-assisted self-assembly of mesostructured. spherical nanoparticles Nature 1999, 398, 223–226.Google Scholar
  13. [13]
    Our, F. X.; Parent, P.; Laffon, C.; Marhaba, I.; Ferry, D.; Marcillaud, B.; Antonsson, E.; Benkoula, S.; Liu, X. J.; Nicolas, C. et al. First in-flight synchrotron X-ray absorption and photoemission study of carbon soot nanoparticles. Sci. Rep. 2016, 6, 36495.CrossRefGoogle Scholar
  14. [14]
    Ferraro, G.; Fratini, E.; Rausa, R.; Fiaschi, P.; Baglioni, P. Multiscale characterization of some commercial carbon blacks and diesel engine soot. Energy Fuels 2016, 30, 9859–9866.CrossRefGoogle Scholar
  15. [15]
    Sztucki, M.; Narayanan, T.; Beaucage, G. In situ study of aggregation of soot particles in an acetylene flame by small-angle X-ray scattering. J. Appl. Phys. 2007, 101, 114304.CrossRefGoogle Scholar
  16. [16]
    Jerby, E.; Golts, A.; Shamir, Y.; Wonde, S.; Mitchell, J. B. A.; LeGarrec, J. L.; Narayanan, T.; Sztucki, M.; Ashkenazi, D.; Barkay, Z. et al. Nanoparticle plasma ejected directly from solid copper by localized microwaves. Appl. Phys. Lett. 2009, 95, 191501.CrossRefGoogle Scholar
  17. [17]
    Hammler, H. K.; Beaucage, G.; Kohls, D. J.; Agashe, N.; Ilavsky, J. Monitoring simultaneously the growth of nanoparticles and aggregates by in situ ultra-small-angle X-ray scattering. J. Appl. Phys. 2005, 97, 054309.CrossRefGoogle Scholar
  18. [18]
    Wang, J.; Seifert, S.; Winans, R. E.; Tolmachoff, E.; Xin, Y. X.; Chen, D. P.; Wang, H.; Anderson, S. L. In situ X-ray scattering and dynamical modeling of Pd catalyst nanoparticles formed in flames. J. Phys. Chem. C 2015, 119, 19073–19082.CrossRefGoogle Scholar
  19. [19]
    Letzel, A.; Gökce, B.; Wagener, P.; Ibrahimkutty, S.; Menzel, A.; Plech, A.; Barcikowski, S. Size quenching during laser synthesis of colloids happens already in the vapor phase of the cavitation bubble. J. Phys. Chem. C 2017, 121, 5356–5365.CrossRefGoogle Scholar
  20. [20]
    Megens, M.; van Kats, C. M.; Bösecke, P.; Vos, W. L. In situ characterization of colloidal spheres by synchrotron small-angle X-ray scattering. Langmuir 1997, 13, 6120–6129.CrossRefGoogle Scholar
  21. [21]
    Smith, M. C.; Gilbert, J. A.; Mawdsley, J. R.; Seifert, S.; Myers, D. J. In situ small-angle X-ray scattering observation of Pt catalyst particle growth during potential cycling. J. Am. Chem. Soc. 2008, 130, 8112–8113.CrossRefGoogle Scholar
  22. [22]
    Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Aberg, I.; Magnusson, M. H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B. et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2013, 339, 1057–1060.CrossRefGoogle Scholar
  23. [23]
    Borgström, M. T.; Wallentin, J.; Heurlin, M.; Fält, S.; Wickert, P.; Leene, J.; Magnusson, M. H.; Deppert, K.; Samuelson, L. Nanowires with promise for photovoltaics. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1050–1061.CrossRefGoogle Scholar
  24. [24]
    Qian, F.; Gradečak, S.; Li, Y.; Wen, C. Y.; Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 2005, 5, 2287–2291.CrossRefGoogle Scholar
  25. [25]
    Messing, M. E.; Johansson, K. A.; Wallenberg, R.; Wallenberg, K. Generation of size-selected gold nanoparticles by spark discharge—For growth of epitaxial nanowires. Gold Bull. 2009, 42, 20–26.CrossRefGoogle Scholar
  26. [26]
    Meuller, B. O.; Messing, M. E.; Engberg, D. L. J.; Jansson, A. M.; Johansson, L. I. M.; Norlén, S. M.; Tureson, N.; Deppert, K. Review of spark discharge generators for production of nanoparticle aerosols. Aerosol Sci. Technol. 2012, 46, 1256–1270.CrossRefGoogle Scholar
  27. [27]
    Narayanan, T.; Diat, O.; Bösecke, P. SAXS and USAXS on the high brilliance beamline at the ESRF. Nucl. Inst. Methods Phys. Res. A. 2001, 467–468, 1005–1009.CrossRefGoogle Scholar
  28. [28]
    Barnes, J. D.; Bras, W. Temperature-dependent three-dimensional smallangle scattering in semicrystalline polymers. J Appl. Crystallogr. 2003, 36, 664–668.CrossRefGoogle Scholar
  29. [29]
    Portale, G.; Cavallo, D.; Alfonso, G. C.; Hermida-Merino, D.; van Drongelen, M.; Balzano, L.; Peters, G. W. M.; Goossens, J. G. P.; Bras W. Polymer crystallization studies under processing-relevant conditions at the SAXS/ WAXS DUBBLE beamline at the ESRF. J. Appl. Crystallogr. 2013, 46, 1681–1689.CrossRefGoogle Scholar
  30. [30]
    Sztucki, M. On-Line Processing and Analysis of SAXS Data [Online]. (accessed Mar 23, 2018).Google Scholar
  31. [31]
    Guinier, A.; Fournet, G. Small Angle Scattering of X-Rays; John Wiley and Sons: New York, 1955.Google Scholar
  32. [32]
    Hagen, D. E.; Alofs, D. J. Linear inversion method to obtain aerosol size distributions from measurements with a differential mobility analyzer. Aerosol Sci. Technol. 1983, 2, 465–475.CrossRefGoogle Scholar
  33. [33]
    Mitchell, J. B. A.; Courbe, J.; Florescu-Mitchell, A. I.; di Stasio, S.; Weiss, T. Demonstration of soot particle resizing in an ethylene flame by small angle X-ray scattering. J. Appl. Phys. 2006, 100, 124918.CrossRefGoogle Scholar
  34. [34]
    Glatter, O.; Kratky, O. Small Angle X-Ray Scattering; Academic Press: London, 1982.Google Scholar
  35. [35]
    X-Ray Data Booklet: Center for X-Ray Optics and Advanced Light Source; Lawrence Berkeley National Laboratory, University of California: Berkeley, CA, USA, 1982.Google Scholar
  36. [36]
    Messing, M. E.; Svensson, C. R.; Pagels, J.; Meuller, B. O.; Deppert, K.; Rissler, J. Gas-borne particles with tunable and highly controlled characteristics for nanotoxicology studies. Nanotoxicology 2012, 7, 1052–1063.CrossRefGoogle Scholar
  37. [37]
    Messing, M. E.; Westerström, R.; Meuller, B. O.; Blomberg, S.; Gustafson, J.; Andersen, J. N.; Lundgren, E.; van Rijn, R.; Balmes, O.; Bluhm, H. et al. Generation of Pd model catalyst nanoparticles by spark discharge. J. Phys. Chem. C 2010, 114, 9257–9263.CrossRefGoogle Scholar
  38. [38]
    Tabrizi, N. S.; Xu, Q.; van der Pers, N. M.; Lafont, U.; Schmidt-Ott, A. Synthesis of mixed metallic nanoparticles by spark discharge. J. Nanopart. Res. 2009, 11, 1209–1218.CrossRefGoogle Scholar
  39. [39]
    Tabrizi, N. S.; Xu, Q.; van der Pers, N. M.; Schmidt-Ott, A. Generation of mixed metallic nanoparticles from immiscible metals by spark discharge. J. Nanopart. Res. 2010, 12, 247–259.CrossRefGoogle Scholar
  40. [40]
    Schwyn, S.; Garwin, E.; Schmidt-Ott, A. Aerosol generation by spark discharge. J. Aerosol Sci. 1988, 19, 639–642CrossRefGoogle Scholar
  41. [41]
    Knutson. E. O.; Whitby, K. T. Aerosol classification by electric mobility: Apparatus, theory, and applications. J. Aerosol Sci. 1975, 6, 443–445.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access The article published in this journal is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

, corrected publication 2018

Authors and Affiliations

  • Sarah R. McKibbin
    • 1
    Email author
  • Sofie Yngman
    • 1
  • Olivier Balmes
    • 2
  • Bengt O. Meuller
    • 1
  • Simon Tågerud
    • 1
  • Maria E. Messing
    • 1
  • Giuseppe Portale
    • 3
  • Michael Sztucki
    • 4
  • Knut Deppert
    • 1
  • Lars Samuelson
    • 1
  • Martin H. Magnusson
    • 1
  • Edvin Lundgren
    • 1
  • Anders Mikkelsen
    • 1
    Email author
  1. 1.Department of Physics and NanolundLund UniversityLundSweden
  2. 2.MaxIV LaboratoryLund UniversityLundSweden
  3. 3.University of Groningen, Zernike Institute for Advanced MaterialsGroningenThe Netherlands
  4. 4.ESRF – The European SynchrotronGrenoble Cedex 9France

Personalised recommendations