Nano Research

, Volume 11, Issue 12, pp 6436–6446 | Cite as

Three-dimensional spongy framework as superlyophilic, strongly absorbing, and electrocatalytic polysulfide reservoir layer for high-rate and long-cycling lithium-sulfur batteries

  • Lianbo Ma
  • Guoyin Zhu
  • Wenjun Zhang
  • Peiyang Zhao
  • Yi Hu
  • Yanrong Wang
  • Lei Wang
  • Renpeng Chen
  • Tao Chen
  • Zuoxiu Tie
  • Jie Liu
  • Zhong JinEmail author
Research Article


In the development of lithium-sulfur (Li-S) batteries, various approaches have been adopted to enhance the electronic conductivity of the sulfur cathode and alleviate the shuttle effect of polysulfides; however, the strategies providing efficient solutions are still limited. To further improve the electrochemical performance of Li-S batteries, in this work we propose a new strategy involving the incorporation of a three-dimensional functional spongy framework as polysulfide reservoir layer, with strong absorbability and electrocatalytic activity towards sulfur species. The spongy framework has a hierarchical architecture composed of highly conductive Ni foam/graphene/carbon nanotubes/MnO2 nanoflakes (NGCM). The strongly interconnected Ni foam, graphene, and carbon nanotubes of the NGCM sponge facilitate electron transfer during discharge/charge processes; moreover, the superlyophilic properties of the NGCM sponge ensure good wettability and interface contact with the Li-S electrolyte, and the porous MnO2 nanoflakes provide strong chemisorptive and electrocatalytic effects on polysulfides (as confirmed theoretically and experimentally). The NGCM sponge, serving as a polysulfide reservoir layer attached on a conventional sulfur-mixed carbon nanotubes (S/CNTs) cathode, can provide improved reversible capacity, rate capability (593 mAh·g–1 at 3.0 C), and cycling stability. In addition, the self-discharge rate is greatly reduced, owing to the efficient conservation of polysulfides in the NGCM spongy framework.


lithium-sulfur batteries composite spongy framework polysulfide reservoir layer chemisorption and absorbability electrocatalytic effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the National Key R&D Program of China (Nos. 2017YFA0208200, 2016YFB0700600, and 2015CB659300), the National Natural Science Foundation of China (Nos. 21403105, 21573108, and 51761135104), Natural Science Foundation of Jiangsu Province (Nos. BK20150583 and BK20170644), and the Fundamental Research Funds for the Central Universities (No. 020514380107).

Supplementary material

12274_2018_2168_MOESM1_ESM.pdf (1.7 mb)
Three-dimensional spongy framework as superlyophilic, strongly absorbing, and electrocatalytic polysulfide reservoir layer for high-rate and long-cycling lithium-sulfur batteries


  1. [1]
    Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506.CrossRefGoogle Scholar
  2. [2]
    Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.CrossRefGoogle Scholar
  3. [3]
    Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium–sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.CrossRefGoogle Scholar
  4. [4]
    Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.CrossRefGoogle Scholar
  5. [5]
    Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem., Int. Ed. 2011, 50, 5904–5908.CrossRefGoogle Scholar
  6. [6]
    Schuster, J.; He, G.; Mandlmeier, B.; Yim, T.; Lee, K. T.; Bein, T.; Nazar, L. F. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew. Chem., Int. Ed. 2012, 51, 3591–3595.CrossRefGoogle Scholar
  7. [7]
    Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.CrossRefGoogle Scholar
  8. [8]
    Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.CrossRefGoogle Scholar
  9. [9]
    Elazari, R.; Salitra, G.; Garsuch, A.; Panchenko, A.; Aurbach, D. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv. Mater. 2011, 23, 5641–5644.CrossRefGoogle Scholar
  10. [10]
    Seh, Z. W.; Wang, H. T.; Hsu, P. C.; Zhang, Q. F.; Li, W. Y.; Zheng, G. Y.; Yao, H. B.; Cui, Y. Facile synthesis of Li2S-polypyrrole composite structures for high-performance Li2S cathodes. Energy Environ. Sci. 2014, 7, 672–676.CrossRefGoogle Scholar
  11. [11]
    Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core–shell structured cathode for Li-S batteries. ACS Nano 2014, 8, 9295–9303.CrossRefGoogle Scholar
  12. [12]
    Wang, Y. K.; Zhang, R. F.; Pang, Y. C.; Chen, X.; Lang, J. X.; Xu, J. J.; Xiao, C. H.; Li, H. L.; Xi, K.; Ding, S. J. Carbon@ titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries. Energy Storage Mater. 2019, 16, 228–235.CrossRefGoogle Scholar
  13. [13]
    Miao, L. X.; Wang, W. K.; Yuan, K. G.; Yang, Y. S.; Wang, A. B. A lithium–sulfur cathode with high sulfur loading and high capacity per area: A binder-free carbon fiber cloth–sulfur material. Chem. Commun. 2014, 50, 13231–13234.CrossRefGoogle Scholar
  14. [14]
    Zhao, M. Q.; Liu, X. F.; Zhang, Q.; Tian, G. L.; Huang, J. Q.; Zhu, W. C.; Wei, F. Graphene/single-walled carbon nanotube hybrids: One-step catalytic growth and applications for highrate Li–S batteries. ACS Nano 2012, 6, 10759–10769.CrossRefGoogle Scholar
  15. [15]
    Yuan, L. X.; Yuan, H. P.; Qiu, X. P.; Chen, L. Q.; Zhu, W. T. Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries. J. Power Sources 2009, 189, 1141–1146.CrossRefGoogle Scholar
  16. [16]
    Song, J. X.; Xu, T.; Gordin, M. L.; Zhu, P. Y.; Lv, D. P.; Jiang, Y. B.; Chen, Y. S.; Duan, Y. H.; Wang, D. H. Nitrogendoped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 1243–1250.CrossRefGoogle Scholar
  17. [17]
    Lee, J. T.; Zhao, Y. Y.; Thieme, S.; Kim, H.; Oschatz, M.; Borchardt, L.; Magasinski, A.; Cho, W. I.; Kaskel, S.; Yushin, G. Sulfur-infiltrated micro- and mesoporous silicon carbidederived carbon cathode for high-performance lithium sulfur batteries. Adv. Mater. 2013, 25, 4573–4579.CrossRefGoogle Scholar
  18. [18]
    Zheng, G. Y.; Zhang, Q. F.; Cha, J. J.; Yang, Y.; Li, W. Y.; Seh, Z. W.; Cui, Y. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett. 2013, 13, 1265–1270.CrossRefGoogle Scholar
  19. [19]
    Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519–527.CrossRefGoogle Scholar
  20. [20]
    Yu, M. P.; Ma, J. S.; Song, H. Q.; Wang, A. J.; Tian, F. Y.; Wang, Y. S.; Qiu, H.; Wang, R. M. Atomic layer deposited TiO2 on a nitrogen-doped graphene/sulfur electrode for high performance lithium-sulfur batteries. Energy Environ. Sci. 2016, 9, 1495–1503.CrossRefGoogle Scholar
  21. [21]
    Li, Z.; Zhang, J. T.; Lou, X. W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium–sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 12886–12890.CrossRefGoogle Scholar
  22. [22]
    Tao, X. Y.; Wang, J. G.; Liu, C.; Wang, H. T.; Yao, H. B.; Zheng, G. Y.; Seh, Z. W.; Cai, Q. X.; Li, W. Y.; Zhou, G. M.; Zu, C. X.; Cui, Y. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithiumsulfur battery design. Nat. Commun. 2016, 7, 11203.CrossRefGoogle Scholar
  23. [23]
    Li, Z. Q.; Li, C. X.; Ge, X. L.; Ma, J. Y.; Zhang, Z. W.; Li, Q.; Wang, C. X.; Yin, L. W. Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy 2016, 23, 15–26.CrossRefGoogle Scholar
  24. [24]
    Li, Y. J.; Fan, J. M.; Zheng, M. S.; Dong, Q. F. A novel synergistic composite with multi-functional effects for highperformance Li-S batteries. Energy. Environ. Sci. 2016, 9, 1998–2004.CrossRefGoogle Scholar
  25. [25]
    Lin, Z.; Liu, Z. C.; Fu, W. J.; Dudney, N. J.; Liang, C. D. Lithium polysulfidophosphates: A family of lithiumconducting sulfur-rich compounds for lithium-sulfur batteries. Angew. Chem., Ed. Int. 2013, 125, 7608–7611.CrossRefGoogle Scholar
  26. [26]
    Lin, Z.; Liu, Z. C.; Fu, W. J.; Dudney, N. J.; Liang, C. D. Phosphorous pentasulfide as a novel additive for highperformance lithium-sulfur batteries. Adv. Funct. Mater. 2013, 23, 1064–1069.CrossRefGoogle Scholar
  27. [27]
    Huang, C.; Xiao, J.; Shao, Y. Y.; Zheng, J. M.; Bennett, W. D.; Lu, D. P.; Saraf, L. V.; Engelhard, M.; Ji, L. W.; Zhang, J. G.; Li, X. L.; Graff, G. L.; Liu, J. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures. Nat. Commun. 2014, 5, 3343.CrossRefGoogle Scholar
  28. [28]
    Zhang, Y. J.; Liu X. Y.; Bai, W. Q.; Tang, H.; Shi, S. J.; Wang, X. L.; Gu, C. D.; Tu, J. P. Magnetron sputtering amorphous carbon coatings on metallic lithium: Towards promising anodes for lithium secondary batteries. J. Power Sources 2014, 266, 43–50.CrossRefGoogle Scholar
  29. [29]
    Kim, J. S.; Kim D. W.; Jung, H. T.; Choi, J. W. Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive. Chem. Mater. 2015, 27, 2780–2787.CrossRefGoogle Scholar
  30. [30]
    Tang, C.; Zhang, Q.; Zhao, M. Q.; Huang, J. Q.; Cheng, X. B.; Tian, G. L.; Peng, H. J.; Wei, F. Nitrogen-doped aligned carbon nanotube/graphene sandwiches: Facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries. Adv. Mater. 2014, 26, 6100–6105.CrossRefGoogle Scholar
  31. [31]
    Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries. Nat. Commun. 2014, 5, 3410.CrossRefGoogle Scholar
  32. [32]
    Kim, A. Y.; Kim, M. K.; Kim, J. Y.; Wen, Y. R.; Gu, L.; Dao, V. D.; Choi, H. S.; Byun, D.; Lee, J. K. Ordered SnO nanoparticles in MWCNT as a functional host material for high-rate lithium-sulfur battery cathode. Nano Res. 2017, 10, 2083–2095.CrossRefGoogle Scholar
  33. [33]
    Dong, X. C.; Ma, Y. W.; Zhu, G. Y.; Huang, Y. X.; Wang, J.; Chan-Park, M. B.; Wang, L. H.; Huang, W.; Chen, P. Synthesis of graphene-carbon nanotube hybrid foam and its use as a novel three-dimensional electrode for electrochemical sensing. J. Mater. Chem. 2012, 22, 17044–17048.CrossRefGoogle Scholar
  34. [34]
    Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano Lett. 2007, 7, 238–242.CrossRefGoogle Scholar
  35. [35]
    Liu, J. P.; Jiang, J.; Cheng, C. W.; Li, H. X.; Zhang, J. X.; Gong, H.; Fan, H. J. Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: A new class of high-performance pseudocapacitive materials. Adv. Mater. 2011, 23, 2076–2081.CrossRefGoogle Scholar
  36. [36]
    Chen, S.; Zhu, J. W.; Wu, X. D.; Han, Q. F.; Wang, X. Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 2010, 4, 2822–2830.CrossRefGoogle Scholar
  37. [37]
    Yan, J.; Fan, Z. J.; Wei, T.; Cheng, J.; Shao, B.; Wang, K.; Song, L. P.; Zhang, M. L. Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. J. Power Sources 2009, 194, 1202–1207.CrossRefGoogle Scholar
  38. [38]
    Xiao, Z. B.; Yang, Z.; Wang, L.; Nie, H. G.; Zhong, M. E.; Lai, Q. Q.; Xu, X. J.; Zhang, L. J.; Huang, S. M. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. Adv. Mater. 2015, 27, 2891–2898.CrossRefGoogle Scholar
  39. [39]
    Hu, G. J.; Sun, Z. H.; Shi, C.; Fang, R. P.; Chen, J.; Hou, P. X.; Liu, C.; Cheng, H. M.; Li, F. A sulfur-rich copolymer@CNT hybrid cathode with dual-confinement of polysulfides for high-performance lithium-sulfur batteries. Adv. Mater. 2017, 29, 1603835.CrossRefGoogle Scholar
  40. [40]
    Ma, L. B.; Yuan, H.; Zhang, W. J.; Zhu, G. Y.; Wang, Y. R.; Hu, Y.; Zhao, P. Y.; Chen, R. P.; Chen, T.; Liu, J.; Hu, Z.; Jin, Z. Porous-shell vanadium nitride nanobubbles with ultrahigh areal sulfur loading for high-capacity and long-life lithiumsulfur batteries. Nano Lett. 2017, 17, 7839–7846.CrossRefGoogle Scholar
  41. [41]
    Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519–527.CrossRefGoogle Scholar
  42. [42]
    Pang, Q.; Kundu, D.; Cuisinier, M.; Nazar, L. F. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 2014, 5, 4759.CrossRefGoogle Scholar
  43. [43]
    Zhao, Y.; Wu, W. L.; Li, J. X.; Xu, Z. C.; Guan, L. H. Encapsulating MWNTs into hollow porous carbon nanotubes: A tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv. Mater. 2014, 26, 5113–5118.CrossRefGoogle Scholar
  44. [44]
    Lee, J. S.; Kim, W.; Jang, J.; Manthiram, A. Sulfur-embedded activated multichannel carbon nanofiber composites for long-life, high-rate lithium-sulfur batteries. Adv. Energy Mater. 2016, 7, 1601943.CrossRefGoogle Scholar
  45. [45]
    Jin, F. Y.; Xiao, S.; Lu, L. J.; Wang, Y. Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium-sulfur batteries. Nano Lett. 2016, 16, 440–447.CrossRefGoogle Scholar
  46. [46]
    Ma, L. B.; Chen, R. P.; Zhu, G. Y.; Hu, Y.; Wang, Y. R.; Chen, T.; Liu, J.; Jin, Z. Cerium oxide nanocrystal embedded bimodal micromesoporous nitrogen-rich carbon nanospheres as effective sulfur host for lithium-sulfur batteries. ACS Nano 2017, 11, 7274–7283.CrossRefGoogle Scholar
  47. [47]
    Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J.; Zhao, J.; Zu, C. X.; Wu, D. S.; Zhang, Q. F.; Cui, Y. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lianbo Ma
    • 1
  • Guoyin Zhu
    • 1
  • Wenjun Zhang
    • 1
  • Peiyang Zhao
    • 1
  • Yi Hu
    • 1
  • Yanrong Wang
    • 1
  • Lei Wang
    • 1
  • Renpeng Chen
    • 1
  • Tao Chen
    • 1
  • Zuoxiu Tie
    • 1
  • Jie Liu
    • 1
    • 2
  • Zhong Jin
    • 1
    Email author
  1. 1.Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina
  2. 2.Department of ChemistryDuke UniversityDurhamUSA

Personalised recommendations