Advertisement

Integration of two-dimensional morphology and porous surfaces to boost methanol electrooxidation performances of PtAg alloy nanomaterials

  • Changshuai Shang
  • Yaxiao Guo
  • Erkang Wang
Research Article
  • 14 Downloads

Abstract

As an attempt to minimize the usage amounts of noble metals in catalysis, PtAg alloy nanocrystals with a porous nanosheet morphology were fabricated through a galvanic replacement reaction. During the reaction, ascorbic acid was added to the solution to protect the Ag triangular nanoplates from being totally etched. Structural characterizations indicated that the obtained nanocrystals had thin porous basal planes and winding edges with abundant bulges. Such unique two-dimensional porous architectures endowed this nanomaterial with plenty of catalytically active sites and structural benefits in electron and mass moving, as well as morphology stability. Electrochemical tests proved that the PtAg porous nanosheets had superior catalytic activity and durability towards methanol electrooxidation in basic media. Specifically, the mass and specific activities of the PtAg porous nanosheets were 4.5 and 2.7 times higher than those of a commercial Pt/C catalyst. In addition to the special structures, the introduction of Ag enhanced the catalytic performances of the PtAg porous nanosheets.

Keywords

platinum silver porous nanosheets two-dimensional methanol electrooxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are grateful for the financial support of MOST China (No. 2016YFA0203200) and the National Natural Science Foundation of China (Nos. 91430217 and 21427811).

Supplementary material

12274_2018_2160_MOESM1_ESM.pdf (3.1 mb)
Integration of two-dimensional morphology and porous surfaces to boost methanol electrooxidation performances of PtAg alloy nanomaterials

References

  1. [1]
    Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F. P.; Zeng, M. et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nat. Commun. 2015, 6, 10035.CrossRefGoogle Scholar
  2. [2]
    Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.; Wang, H. J.; Wilkinson, D. P. A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 2006, 155, 95–110.CrossRefGoogle Scholar
  3. [3]
    Bianchini, C.; Shen, P. K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 2009, 109, 4183–4206.CrossRefGoogle Scholar
  4. [4]
    Shang, C. S.; Hong, W.; Guo, Y. X.; Wang, J.; Wang, E. K. One-step synthesis of platinum nanochain networks toward methanol electrooxidation. ChemElectroChem 2016, 3, 2093–2099.CrossRefGoogle Scholar
  5. [5]
    Feng, Q. C.; Zhao, S.; He, D. S.; Tian, S. B.; Gu, L.; Wen, X. D.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J. Am. Chem. Soc. 2018, 140, 2773–2776.CrossRefGoogle Scholar
  6. [6]
    Sulaiman, J. E.; Zhu, S. Q.; Xing, Z. L.; Chang, Q. W.; Shao, M. H. Pt–Ni octahedra as electrocatalysts for the ethanol electro-oxidation reaction. ACS Catal. 2017, 7, 5134–5141.CrossRefGoogle Scholar
  7. [7]
    Qiu, X. Y.; Zhang, H. Y.; Wu, P. S.; Zhang, F. Q.; Wei, S. H.; Sun, D. M.; Xu, L.; Tang, Y. W. One-pot synthesis of freestanding porous palladium nanosheets as highly efficient electrocatalysts for formic acid oxidation. Adv. Funct. Mater. 2017, 27, 1603852.CrossRefGoogle Scholar
  8. [8]
    Hong, W.; Wang, J.; Wang, E. K. RuTe/M (M = Pt, Pd) nanoparticle nanotubes with enhanced electrocatalytic activity. J. Mater. Chem. A 2015, 3, 13642–13647.CrossRefGoogle Scholar
  9. [9]
    Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.CrossRefGoogle Scholar
  10. [10]
    Guo, S. J.; Dong, S. J.; Wang, E. K. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 2010, 4, 547–555.CrossRefGoogle Scholar
  11. [11]
    Ge, J. J.; Wei, P.; Wu, G.; Liu, Y. D.; Yuan, T. W.; Li, Z. J.; Qu, Y. T.; Wu, Y. E.; Li, H.; Zhuang, Z. B. et al. Ultrathin palladium nanomesh for electrocatalysis. Angew. Chem., Int. Ed. 2018, 57, 3435–3438.CrossRefGoogle Scholar
  12. [12]
    Fu, T.; Fang, J.; Wang, C. S.; Zhao, J. B. Hollow porous nanoparticles with Pt skin on a Ag-Pt alloy structure as a highly active electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 2016, 4, 8803–8811.CrossRefGoogle Scholar
  13. [13]
    Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.CrossRefGoogle Scholar
  14. [14]
    Hong, W.; Bi, P. Y.; Shang, C. S.; Wang, J.; Wang, E. K. Multi-walled carbon nanotube supported Pd nanocubes with enhanced electrocatalytic activity. J. Mater. Chem. A 2016, 4, 4485–4489.CrossRefGoogle Scholar
  15. [15]
    Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.CrossRefGoogle Scholar
  16. [16]
    Sun, X. H.; Jiang, K. Z.; Zhang, N.; Guo, S. J.; Huang, X. Q. Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano 2015, 9, 7634–7640.CrossRefGoogle Scholar
  17. [17]
    Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.CrossRefGoogle Scholar
  18. [18]
    Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.CrossRefGoogle Scholar
  19. [19]
    Guo, S. J.; Zhang, S.; Sun, X. L.; Sun, S. H. Synthesis of ultrathin FePtPd nanowires and their use as catalysts for methanol oxidation reaction. J. Am. Chem. Soc. 2011, 133, 15354–15357.CrossRefGoogle Scholar
  20. [20]
    Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X. et al. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 2015, 349, 412–416.CrossRefGoogle Scholar
  21. [21]
    Yang, N. L.; Zhang, Z. C.; Chen, B.; Huang, Y.; Chen, J. Z.; Lai, Z. C.; Chen, Y.; Sindoro, M.; Wang, A. L.; Cheng, H. F. et al. Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Adv. Mater. 2017, 29, 1700769.CrossRefGoogle Scholar
  22. [22]
    Cho, K. Y.; Yeom, Y. S.; Seo, H. Y.; Kumar, P.; Baek, K.-Y.; Yoon, H. G. A facile synthetic route for highly durable mesoporous platinum thin film electrocatalysts based on graphene: Morphological and support effects on the oxygen reduction reaction. J. Mater. Chem. A 2017, 5, 3129–3135.CrossRefGoogle Scholar
  23. [23]
    Zhao, W. Y.; Ni, B.; Yuan, Q.; He, P. L.; Gong, Y.; Gu, L.; Wang, X. Highly active and durable Pt72Ru28 porous nanoalloy assembled with sub-4.0 nm particles for methanol oxidation. Adv. Energy Mater. 2017, 7, 1601593.CrossRefGoogle Scholar
  24. [24]
    Zhao, X.; Yin, M.; Ma, L.; Liang, L.; Liu, C. P.; Liao, J. H.; Lu, T. H.; Xing, W. Recent advances in catalysts for direct methanol fuel cells. Energy Environ. Sci. 2011, 4, 2736–2753.CrossRefGoogle Scholar
  25. [25]
    Fu, G. T.; Liu, H. M.; You, N. K.; Wu, J. Y.; Sun, D. M.; Xu, L.; Tang, Y. W.; Chen, Y. Dendritic platinum–copper bimetallic nanoassemblies with tunable composition and structure: Arginine-driven self-assembly and enhanced electrocatalytic activity. Nano Res. 2016, 9, 755–765.CrossRefGoogle Scholar
  26. [26]
    Wang, Y.; Sheng, Z. M.; Yang, H. B.; Jiang, S. P.; Li, C. M. Electrocatalysis of carbon black- or activated carbon nanotubes-supported Pd–Ag towards methanol oxidation in alkaline media. Int. J. Hydrogen Energy 2010, 35, 10087–10093.CrossRefGoogle Scholar
  27. [27]
    Fang, C. H.; Zhao, J.; Zhao, G. L.; Kuai, L.; Geng, B. Y. Simultaneous tunable structure and composition of PtAg alloyed nanocrystals as superior catalysts. Nanoscale 2016, 8, 14971–14978.CrossRefGoogle Scholar
  28. [28]
    Yang, X.; Roling, L. T.; Vara, M.; Elnabawy, A. O.; Zhao, M.; Hood, Z. D.; Bao, S. X.; Mavrikakis, M.; Xia, Y. N. Synthesis and characterization of Pt–Ag alloy nanocages with enhanced activity and durability toward oxygen reduction. Nano Lett. 2016, 16, 6644–6649.CrossRefGoogle Scholar
  29. [29]
    Wang, R. Y.; Higgins, D. C.; Prabhudev, S.; Lee, D. U.; Choi, J.-Y.; Hoque, M. A.; Botton, G. A.; Chen, Z. W. Synthesis and structural evolution of Pt nanotubular skeletons: Revealing the source of the instability of nanostructured electrocatalysts. J. Mater. Chem. A 2015, 3, 12663–12671.CrossRefGoogle Scholar
  30. [30]
    Xu, H.; Song, P. P.; Yan, B.; Wang, C. Q.; Shiraishi, Y.; Yang, P.; Du, Y. K. Pt islands on 3D nut-like PtAg nanocrystals for efficient formic acid oxidation electrocatalysis. ChemSusChem 2018, 11, 1056–1062.CrossRefGoogle Scholar
  31. [31]
    Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shapecontrolled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.CrossRefGoogle Scholar
  32. [32]
    Liu, X. X.; Li, L. L.; Yang, Y. D.; Yin, Y. D.; Gao, C. B. One-step growth of triangular silver nanoplates with predictable sizes on a large scale. Nanoscale 2014, 6, 4513–4516.CrossRefGoogle Scholar
  33. [33]
    Xu, H.; Wang, J.; Yan, B.; Zhang, K.; Li, S. M.; Wang, C. Q.; Shiraishi, Y.; Du, Y. K.; Yang, P. Hollow AuxAg/Au core/shell nanospheres as efficient catalysts for electrooxidation of liquid fuels. Nanoscale 2017, 9, 12996–13003.CrossRefGoogle Scholar
  34. [34]
    Xu, H.; Wang, J.; Yan, B.; Li, S. M.; Wang, C. Q.; Shiraishi, Y.; Yang, P.; Du, Y. K. Facile construction of fascinating trimetallic PdAuAg nanocages with exceptional ethylene glycol and glycerol oxidation activity. Nanoscale 2017, 9, 17004–17012.CrossRefGoogle Scholar
  35. [35]
    Xu, H.; Yan, B.; Wang, J.; Zhang, K.; Li, S. M.; Xiong, Z. P.; Wang, C. Q.; Shiraishi, Y.; Du, Y. K.; Yang, P. Self-supported porous 2D AuCu triangular nanoprisms as model electrocatalysts for ethylene glycol and glycerol oxidation. J. Mater. Chem. A 2017, 5, 15932–15939.CrossRefGoogle Scholar
  36. [36]
    Tang, Y.; Cheng, W. L. Key parameters governing metallic nanoparticle electrocatalysis. Nanoscale 2015, 7, 16151–16164.CrossRefGoogle Scholar
  37. [37]
    Fu, S. F.; Zhu, C. Z.; Du, D.; Lin, Y. H. Enhanced electrocatalytic activities of PtCuCoNi three-dimensional nanoporous quaternary alloys for oxygen reduction and methanol oxidation reactions. ACS Appl. Mater. Interfaces 2016, 8, 6110–6116.CrossRefGoogle Scholar
  38. [38]
    Fu, G. T.; Ma, R. G.; Gao, X. Q.; Chen, Y.; Tang, Y. W.; Lu, T. H.; Lee, J. M. Hydrothermal synthesis of Pt-Ag alloy nano-octahedra and their enhanced electrocatalytic activity for the methanol oxidation reaction. Nanoscale 2014, 6, 12310–12314.CrossRefGoogle Scholar
  39. [39]
    Hong, W.; Shang, C. S.; Wang, J.; Wang, E. K. Bimetallic PdPt nanowire networks with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation. Energy Environ. Sci. 2015, 8, 2910–2915.CrossRefGoogle Scholar
  40. [40]
    Xie, X. B.; Gao, G. H.; Kang, S. D.; Shibayama, T.; Lei, Y. H.; Gao, D. Y.; Cai, L. T. Site-selective trimetallic heterogeneous nanostructures for enhanced electrocatalytic performance. Adv. Mater. 2015, 27, 5573–5577.CrossRefGoogle Scholar
  41. [41]
    Feng, Y. Y.; Bi, L. X.; Liu, Z. H.; Kong, D. S.; Yu, Z. Y. Significantly enhanced electrocatalytic activity for methanol electro-oxidation on Ag oxide-promoted PtAg/C catalysts in alkaline electrolyte. J. Catal. 2012, 290, 18–25.CrossRefGoogle Scholar
  42. [42]
    Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc. 1999, 146, 3750–3756.CrossRefGoogle Scholar
  43. [43]
    Hong, W.; Wang, J.; Wang, E. K. Facile synthesis of PtCu nanowires with enhanced electrocatalytic activity. Nano Res. 2015, 8, 2308–2316.CrossRefGoogle Scholar
  44. [44]
    Lou, Y.; Li, C. G.; Gao, X. D.; Bai, T. Y.; Chen, C. L.; Huang, H.; Liang, C.; Shi, Z.; Feng, S. H. Porous Pt nanotubes with high methanol oxidation electrocatalytic activity based on original bamboo-shaped Te nanotubes. ACS Appl. Mater. Interfaces 2016, 8, 16147–16153.CrossRefGoogle Scholar
  45. [45]
    Chen, L. X.; Liu, L.; Feng, J. J.; Wang, Z. G.; Wang, A. J. Oligonucleotide-assisted successive coreduction synthesis of dendritic platinum–gold core–shell alloy nanocrystals with improved electrocatalytic performance for methanol oxidation. J. Power Sources 2016, 302, 140–145.CrossRefGoogle Scholar
  46. [46]
    Shang, C. S.; Hong, W.; Wang, J.; Wang, E. K. Carbon supported trimetallic nickel–palladium–gold hollow nanoparticles with superior catalytic activity for methanol electrooxidation. J. Power Sources 2015, 285, 12–15.CrossRefGoogle Scholar
  47. [47]
    Ji, Y. J.; Wu, Y. E.; Zhao, G. F.; Wang, D. S.; Liu, L.; He, W.; Li, Y. D. Porous bimetallic Pt-Fe nanocatalysts for highly efficient hydrogenation of acetone. Nano Res. 2015, 8, 2706–2713.CrossRefGoogle Scholar
  48. [48]
    Bae, J. H.; Han, J. H.; Chung, T. D. Electrochemistry at nanoporous interfaces: New opportunity for electrocatalysis. Phys. Chem. Chem. Phys. 2012, 14, 448–463.CrossRefGoogle Scholar
  49. [49]
    Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.CrossRefGoogle Scholar
  50. [50]
    Morallón, E.; Rodes, A.; Vázquez, J. L.; Pérez, J. M. Voltammetric and in-situ FTIR spectroscopic study of the oxidation of methanol on Pt(hkl) in alkaline media. J. Electroanal. Chem. 1995, 391, 149–157.CrossRefGoogle Scholar
  51. [51]
    Tripković, A. V.; Popović, K. D.; Momčilović, J. D.; Dražić, D. M. Kinetic and mechanistic study of methanol oxidation on a Pt(100) surface in alkaline media. J. Electroanal. Chem. 1998, 448, 173–181.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations