Advertisement

Nanoscopic imaging of oxidized graphene monolayer using tip-enhanced Raman scattering

  • Joseph M. Smolsky
  • Alexey V. Krasnoslobodtsev
Research Article
  • 15 Downloads

Abstract

Tip-enhanced Raman scattering (TERS) can be used for the structural and chemical characterization of materials with a nanoscale resolution, and offers numerous advantages compared to other forms of imaging. We use TERS to track the local structural features of a CVD-grown graphene monolayer. Ag nanoparticles were added to AFM probes using ion-beam sputtering in order to make them TERS-active. Such modification provides probes with large factors of enhancement and good reproducibility. TERS measurements on graphene show an emergence of a defect-induced D-Raman band and a strain-induced shoulder of the graphene’s G-band. Comparison of TERS results with micro-Raman for oxidized graphene suggests that local oxidation occurs with the introduction of sp3 defects, under TERS conditions.

Keywords

graphene Raman spectroscopy tip-enhanced Raman scattering graphene oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work was partially supported by the following grants: NIGMS 2P20GM103480-09 to AVK; Funds for Undergraduate Scholarly Experiences from the Office of Research and Creative Activity at UNO to J. S. The authors would like to thank Dr. Yuri L. Lyubchenko, at the Department of Pharmaceutical Sciences, University of Nebraska Medical Center, for supporting initial stages of this study and J. S. during his Summer Undergraduate Research Project (SURP) at UNMC. We acknowledge the contribution of Dr. Ivan Vlassiouk (Oak Ridge National Laboratory) for his help with synthesis of CVD graphene.

Supplementary material

12274_2018_2158_MOESM1_ESM.pdf (698 kb)
Nanoscopic imaging of oxidized graphene monolayer using tip-enhanced Raman scattering

References

  1. [1]
    Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge University Press: New York, USA, 2006.CrossRefGoogle Scholar
  2. [2]
    Domke, K. F.; Zhang, D.; Pettinger, B. Tip-enhanced Raman spectra of picomole quantities of DNA nucleobases at Au(111). J. Am. Chem. Soc. 2007, 129, 6708–6709.CrossRefGoogle Scholar
  3. [3]
    Zhang, W. H.; Yeo, B. S.; Schmid, T.; Zenobi, R. Single molecule tip-enhanced raman spectroscopy with silver tips. J. Phys. Chem. C 2007, 111, 1733–1738.CrossRefGoogle Scholar
  4. [4]
    Sonntag, M. D.; Klingsporn, J. M.; Garibay, L. K.; Roberts, J. M.; Dieringer, J. A.; Seideman, T.; Scheidt, K. A.; Jensen, L.; Schatz, G. C.; van Duyne, R. P. Single-molecule tipenhanced raman spectroscopy. J. Phys. Chem. C 2012, 116, 478–483.CrossRefGoogle Scholar
  5. [5]
    Liu, Z.; Ding, S. Y.; Chen, Z. B.; Wang, X.; Tian, J. H.; Anema, J. R.; Zhou, X. S.; Wu, D. Y.; Mao, B. W.; Xu, X. et al. Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nat. Commun. 2011, 2, 305.CrossRefGoogle Scholar
  6. [6]
    Steidtner, J.; Pettinger, B. Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys. Rev. Lett. 2008, 100, 236101.CrossRefGoogle Scholar
  7. [7]
    Sonntag, M. D.; Chulhai, D.; Seideman, T.; Jensen, L.; van Duyne, R. P. The origin of relative intensity fluctuations in single-molecule tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2013, 135, 17187–17192.CrossRefGoogle Scholar
  8. [8]
    Bailo, E.; Deckert, V. Tip-enhanced Raman spectroscopy of single RNA strands: Towards a novel direct-sequencing method. Angew. Chem., Int. Ed. 2008, 47, 1658–1661.CrossRefGoogle Scholar
  9. [9]
    Krasnoslobodtsev, A. V.; Deckert-Gaudig, T.; Zhang, Y. L.; Deckert, V.; Lyubchenko, Y. L. Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and tip-enhanced Raman scattering studies. Ultramicroscopy 2016, 165, 26–33.CrossRefGoogle Scholar
  10. [10]
    Kurouski, D.; Deckert-Gaudig, T.; Deckert, V.; Lednev, I. K. Structure and composition of insulin fibril surfaces probed by TERS. J. Am. Chem. Soc. 2012, 134, 13323–13329.CrossRefGoogle Scholar
  11. [11]
    Krasnoslobodtsev, A. V.; Portillo, A. M.; Deckert-Gaudig, T.; Deckert, V.; Lyubchenko, Y. L. Nanoimaging for prion related diseases. Prion 2010, 4, 265–274.CrossRefGoogle Scholar
  12. [12]
    Böhme, R.; Richter, M.; Cialla, D.; Rösch, P.; Deckert, V.; Popp, J. Towards a specific characterisation of components on a cell surface—combined TERS-investigations of lipids and human cells. J. Raman Spectrosc. 2009, 40, 1452–1457.CrossRefGoogle Scholar
  13. [13]
    Richter, M.; Hedegaard, M.; Deckert-Gaudig, T.; Deckert, V. Multivariate analysis of TERS maps on a single human colon cancer cell. AIP Conf. Proc. 2010, 1267, 1245–1246.CrossRefGoogle Scholar
  14. [14]
    Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.CrossRefGoogle Scholar
  15. [15]
    Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Mechanical properties of graphene and graphene-based nanocomposites. Progr. Mater. Sci. 2017, 90, 75–127.CrossRefGoogle Scholar
  16. [16]
    Boukhvalov, D. W.; Katsnelson, M. I. Modeling of graphite oxide. J. Am. Chem. Soc. 2008, 130, 10697–10701.CrossRefGoogle Scholar
  17. [17]
    Gupta, V.; Sharma, N.; Singh, U.; Arif, M.; Singh, A. Higher oxidation level in graphene oxide. Optik 2017, 143, 115–124.CrossRefGoogle Scholar
  18. [18]
    Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 2012, 12, 3925–3930.CrossRefGoogle Scholar
  19. [19]
    Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud’homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.CrossRefGoogle Scholar
  20. [20]
    Wei, L. M.; Wu, F.; Shi, D. W.; Hu, C. C.; Li, X. L.; Yuan, W. E.; Wang, J.; Zhao, J.; Geng, H. J.; Wei, H. et al. Spontaneous intercalation of long-chain alkyl ammonium into edge-selectively oxidized graphite to efficiently produce high-quality graphene. Sci. Rep. 2013, 3, 2636.CrossRefGoogle Scholar
  21. [21]
    Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.CrossRefGoogle Scholar
  22. [22]
    Chacón-Torres, J. C.; Wirtz, L.; Pichler, T. Manifestation of charged and strained graphene layers in the Raman response of graphite intercalation compounds. ACS Nano 2013, 7, 9249–9259.CrossRefGoogle Scholar
  23. [23]
    Goldsche, M.; Sonntag, J.; Khodkov, T.; Verbiest, G. J.; Reichardt, S.; Neumann, C.; Ouaj, T.; von den Driesch, N.; Buca, D.; Stampfer, C. Tailoring mechanically tunable strain fields in graphene. Nano Lett. 2018, 18, 1707–1713.CrossRefGoogle Scholar
  24. [24]
    Kaniyoor, A.; Ramaprabhu, S. A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2012, 2, 032183.CrossRefGoogle Scholar
  25. [25]
    López-Díaz, D.; López Holgado, M.; García-Fierro, J. L.; Velázquez, M. M. Evolution of the Raman spectrum with the chemical composition of graphene oxide. J. Phys. Chem. C 2017, 121, 20489–20497.CrossRefGoogle Scholar
  26. [26]
    Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.CrossRefGoogle Scholar
  27. [27]
    Stampfer, C.; Molitor, F.; Graf, D.; Ensslin, K.; Jungen, A.; Hierold, C.; Wirtz, L. Raman imaging of doping domains in graphene on SiO2. Appl. Phys. Lett. 2007, 91, 241907.CrossRefGoogle Scholar
  28. [28]
    Wang, Q. H.; Shih, C.-J.; Paulus, G. L. C.; Strano, M. S. Evolution of physical and electronic structures of bilayer graphene upon chemical functionalization. J. Am. Chem. Soc. 2013, 135, 18866–18875.CrossRefGoogle Scholar
  29. [29]
    Beams, R. Tip-enhanced Raman scattering of graphene. J. Raman Spectrosc. 2018, 49, 157–167.CrossRefGoogle Scholar
  30. [30]
    Snitka, V.; Rodrigues, R. D.; Lendraitis, V. Novel gold cantilever for nano-Raman spectroscopy of graphene. Microelectron. Eng. 2011, 88, 2759–2762.CrossRefGoogle Scholar
  31. [31]
    Chen, C.; Hayazawa, N.; Kawata, S. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 2014, 5, 3312.CrossRefGoogle Scholar
  32. [32]
    Stadler, J.; Schmid, T.; Zenobi, R. Nanoscale chemical imaging of single-layer graphene. ACS Nano 2011, 5, 8442–8448.CrossRefGoogle Scholar
  33. [33]
    Vlassiouk, I.; Smirnov, S.; Regmi, M.; Surwade, S. P.; Srivastava, N.; Feenstra, R.; Eres, G.; Parish, C.; Lavrik, N.; Datskos, P. et al. Graphene nucleation density on copper: Fundamental role of background pressure. J. Phys. Chem. C 2013, 117, 18919–18926.CrossRefGoogle Scholar
  34. [34]
    Vlassiouk, I.; Fulvio, P.; Meyer, H.; Lavrik, N.; Dai, S.; Datskos, P.; Smirnov, S. Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon 2013, 54, 58–67.CrossRefGoogle Scholar
  35. [35]
    Strelchuk, V. V.; Nikolenko, A. S.; Gubanov, V. O.; Biliy, M. M.; Bulavin, L. A. Dispersion of electron-phonon resonances in one-layer graphene and its demonstration in micro-Raman scattering. J. Nanosci. Nanotechnol. 2012, 12, 8671–8675.CrossRefGoogle Scholar
  36. [36]
    Cancado, L. G.; Pimenta, M. A.; Neves, B. R. A.; Dantas, M. S. S.; Jorio, A. Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 2004, 93, 247401.CrossRefGoogle Scholar
  37. [37]
    Shan, C. S.; Tang, H.; Wong, T.; He, L. F.; Lee, S.-T. Facile synthesis of a large quantity of graphene by chemical vapor deposition: An advanced catalyst carrier. Adv. Mater. 2012, 24, 2491–2495.CrossRefGoogle Scholar
  38. [38]
    Luo, Z. Q.; Cong, C. X.; Zhang, J.; Xiong, Q. H.; Yu, T. The origin of sub-bands in the Raman D-band of graphene. Carbon 2012, 50, 4252–4258.CrossRefGoogle Scholar
  39. [39]
    Cancado, L. G.; Jorio, A.; Ferreira, E. H.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196.CrossRefGoogle Scholar
  40. [40]
    Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48, 1592–1597.CrossRefGoogle Scholar
  41. [41]
    Zandiatashbar, A.; Lee, G. H.; An, S. J.; Lee, S.; Mathew, N.; Terrones, M.; Hayashi, T.; Picu, C. R.; Hone, J.; Koratkar, N. Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 2014, 5, 3186.CrossRefGoogle Scholar
  42. [42]
    Ma, J. W.; Habrioux, A.; Luo, Y.; Ramos-Sanchez, G.; Calvillo, L.; Granozzi, G.; Balbuena, P. B.; Alonso-Vante, N. Electronic interaction between platinum nanoparticles and nitrogen-doped reduced graphene oxide: Effect on the oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 11891–11904.CrossRefGoogle Scholar
  43. [43]
    Ahn, G. H.; Kim, H. R.; Hong, B. H.; Ryu, S. M. Raman spectroscopy study on the reactions of UV-generated oxygen atoms with single-layer graphene on SiO2/Si substrates. Carbon Lett. 2012, 13, 34–38.CrossRefGoogle Scholar
  44. [44]
    Vecera, P.; Chacón-Torres, J. C.; Pichler, T.; Reich, S.; Soni, H. R.; Görling, A.; Edelthalhammer, K.; Peterlik, H.; Hauke, F.; Hirsch, A. Precise determination of graphene functionalization by in situ Raman spectroscopy. Nat. Commun. 2017, 8, 15192.CrossRefGoogle Scholar
  45. [45]
    Shroder, R. E.; Nemanich, R. J.; Glass, J. T. Analysis of the composite structures in diamond thin films by Raman spectroscopy. Phys. Rev. B 1990, 41, 3738–3745.CrossRefGoogle Scholar
  46. [46]
    Huang, M. Y.; Yan, H. G.; Chen, C. Y.; Song, D. H.; Heinz, T. F.; Hone, J. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2009, 106, 7304–7308.CrossRefGoogle Scholar
  47. [47]
    Schmid, T.; Yeo, B.-S.; Leong, G.; Stadler, J.; Zenobi, R. Performing tip-enhanced Raman spectroscopy in liquids. J. Raman Spectrosc. 2009, 40, 1392–1399.CrossRefGoogle Scholar
  48. [48]
    Beams, R.; Cancado, L. G.; Novotny, L. Low temperature raman study of the electron coherence length near graphene edges. Nano Lett. 2011, 11, 1177–1181.CrossRefGoogle Scholar
  49. [49]
    Lee, J.; Shim, S.; Kim, B.; Shin, H. S. Surface-enhanced Raman scattering of single- and few-layer graphene by the deposition of gold nanoparticles. Chem.–Eur. J. 2011, 17, 2381–2387.CrossRefGoogle Scholar
  50. [50]
    Maximiano, R. V.; Beams, R.; Novotny, L.; Jorio, A.; Cançado, L. G. Mechanism of near-field Raman enhancement in two-dimensional systems. Phys. Rev. B 2012, 85, 235434.CrossRefGoogle Scholar
  51. [51]
    Jensen, T. R.; Duval, M. L.; Kelly, K. L.; Lazarides, A. A.; Schatz, G. C.; van Duyne, R. P. Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J. Phys. Chem. B 1999, 103, 9846–9853.CrossRefGoogle Scholar
  52. [52]
    Félidj, N.; Aubard, J.; Lévi, G.; Krenn, J. R.; Hohenau, A.; Schider, G.; Leitner, A.; Aussenegg, F. R. Optimized surfaceenhanced Raman scattering on gold nanoparticle arrays. Appl. Phys. Lett. 2003, 82, 3095–3097.CrossRefGoogle Scholar
  53. [53]
    Sow, I.; Grand, J.; Lévi, G.; Aubard, J.; Félidj, N.; Tinguely, J. C.; Hohenau, A.; Krenn, J. R. Revisiting surface-enhanced Raman scattering on realistic lithographic gold nanostripes. J. Phys. Chem. C 2013, 117, 25650–25658.CrossRefGoogle Scholar
  54. [54]
    Wang, P.; Zhang, W.; Liang, O.; Pantoja, M.; Katzer, J.; Schroeder, T.; Xie, Y.-H. Giant optical response from graphene–plasmonic system. ACS Nano 2012, 6, 6244–6249.CrossRefGoogle Scholar
  55. [55]
    Su, W. T.; Kumar, N.; Dai, N.; Roy, D. Nanoscale mapping of intrinsic defects in single-layer graphene using tip-enhanced Raman spectroscopy. Chem. Commun. 2016, 52, 8227–8230.CrossRefGoogle Scholar
  56. [56]
    Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 2006, 311, 189–193.CrossRefGoogle Scholar
  57. [57]
    Wang, J. J.; Saito, Y.; Batchelder, D. N.; Kirkham, J.; Robinson, C.; Smith, D. A. Controllable method for the preparation of metalized probes for efficient scanning near-field optical Raman microscopy. Appl. Phys. Lett. 2005, 86, 263111.CrossRefGoogle Scholar
  58. [58]
    Ratinac, K. R.; Yang, W. R.; Ringer, S. P.; Braet, F. Toward ubiquitous environmental gas sensors—capitalizing on the promise of graphene. Environ. Sci. Technol. 2010, 44, 1167–1176.CrossRefGoogle Scholar
  59. [59]
    Wei, Z. Q.; Wang, D. B.; Kim, S.; Kim, S.-Y.; Hu, Y. K.; Yakes, M. K.; Laracuente, A. R.; Dai, Z. T.; Marder, S. R.; Berger, C. et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 2010, 328, 1373–1376.CrossRefGoogle Scholar
  60. [60]
    Wu, X. S.; Sprinkle, M.; Li, X. B.; Ming, F.; Berger, C.; de Heer, W. A. Epitaxial-graphene/graphene-oxide junction: An essential step towards epitaxial graphene electronics. Phys. Rev. Lett. 2008, 101, 026801.CrossRefGoogle Scholar
  61. [61]
    Loh, K. P.; Bao, Q. L.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024.CrossRefGoogle Scholar
  62. [62]
    Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z. Q.; Sheehan, P. E. Reduced graphene oxide molecular sensors. Nano Lett. 2008, 8, 3137–3140.CrossRefGoogle Scholar
  63. [63]
    Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.CrossRefGoogle Scholar
  64. [64]
    Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.CrossRefGoogle Scholar
  65. [65]
    Zhou, S.; Bongiorno, A. Origin of the chemical and kinetic stability of graphene oxide. Sci. Rep. 2013, 3, 2484.CrossRefGoogle Scholar
  66. [66]
    Lv, G. Q.; Wang, H. L.; Yang, Y. X.; Deng, T. S.; Chen, C. M.; Zhu, Y. L.; Hou, X. L. Graphene oxide: A convenient metal-free carbocatalyst for facilitating aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran. ACS Catal. 2015, 5, 5636–5646.CrossRefGoogle Scholar
  67. [67]
    Park, S.; Lee, K.-S.; Bozoklu, G.; Cai, W. W.; Nguyen, S. T.; Ruoff, R. S. Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical crosslinking. ACS Nano 2008, 2, 572–578.CrossRefGoogle Scholar
  68. [68]
    Suk, J. W.; Piner, R. D.; An, J.; Ruoff, R. S. Mechanical properties of monolayer graphene oxide. ACS Nano 2010, 4, 6557–6564.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Joseph M. Smolsky
    • 1
  • Alexey V. Krasnoslobodtsev
    • 1
  1. 1.Department of PhysicsUniversity of Nebraska at OmahaOmahaUSA

Personalised recommendations