Advertisement

Nano Research

, Volume 11, Issue 12, pp 6260–6269 | Cite as

Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction

  • Konglin Wu
  • Xin Chen
  • Shoujie Liu
  • Yuan Pan
  • Weng-Chon Cheong
  • Wei Zhu
  • Xing Cao
  • Rongan Shen
  • Wenxing Chen
  • Jun Luo
  • Wensheng Yan
  • Lirong Zheng
  • Zheng ChenEmail author
  • Dingsheng Wang
  • Qing Peng
  • Chen ChenEmail author
  • Yadong Li
Research Article
  • 432 Downloads

Abstract

We developed a strategy based on coordination polymer to synthesize singleatom site Fe/N and S-codoped hierarchical porous carbon (Fe1/N,S-PC). The as-obtained Fe1/N,S-PC exhibited superior oxygen reduction reaction (ORR) performance with a half-wave potential (E1/2, 0.904 V vs. RHE) that was better than that of commercial Pt/C (E1/2, 0.86 V vs. RHE), single-atom site Fe/N-doped hierarchical porous carbon (Fe1/N-PC) without S-doped (E1/2, 0.85 V vs. RHE), and many other nonprecious metal catalysts in alkaline medium. Moreover, the Fe1/N,S-PC revealed high methanol tolerance and firm stability. The excellent electrocatalytic activity of Fe1/N,S-PC is attributed to the synergistic effects from the atomically dispersed porphyrin-like Fe-N4 active sites, the heteroatom codoping (N and S), and the hierarchical porous structure in the carbon materials. The calculation based on density functional theory further indicates that the catalytic performance of Fe1/N,S-PC is better than that of Fe1/N-PC owing to the sulfur doping that yielded different rate-determining steps.

Keywords

single-atom catalyst heteroatom codoping porous materials oxygen reduction electrocatalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by China Ministry of Science and Technology under Contract of 2016YFA (0202801), the National Natural Science Foundation of China (Nos. 21521091, 21390393, U1463202, 21573119, 21590792, and 21501004). We thanks for the help from the Beijing Synchrotron Radiation Facility (BSRF) and National Synchrotron Radiation Laboratory (NSRL) in characterizations.

Supplementary material

12274_2018_2149_MOESM1_ESM.pdf (5.7 mb)
Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction

References

  1. [1]
    Zhou, M.; Wang, H.-L.; Guo, S. J. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem. Soc. Rev. 2016, 45, 1273–1307.CrossRefGoogle Scholar
  2. [2]
    Becknell, N.; Son, Y.; Kim, D.; Li, D. G.; Yu, Y.; Niu, Z. Q.; Lei, T.; Sneed, B. T.; More, K. L.; Markovic, N. M. et al. Control of architecture in rhombic dodecahedral Pt–Ni nanoframe electrocatalysts. J. Am. Chem. Soc. 2017, 139, 11678–11681.CrossRefGoogle Scholar
  3. [3]
    Shen, M. X.; Wei, C. T.; Ai, K. L.; Lu, L. H. Transition metal–nitrogen–carbon nanostructured catalysts for the oxygen reduction reaction: From mechanistic insights to structural optimization. Nano Res. 2017, 10, 1449–1470.CrossRefGoogle Scholar
  4. [4]
    Shang, C. Q.; Yang, M. Y.; Wang, Z. Y.; Li, M. C.; Liu, M.; Zhu, J.; Zhu, Y. G.; Zhou, L J..; Cheng, H.; Gu, Y. Y. et al. Encapsulated MnO in N-doping carbon nanofibers as efficient ORR electrocatalysts. Sci. China Mater. 2017, 60, 937–946.CrossRefGoogle Scholar
  5. [5]
    Wu, S. S.; Zhu, Y. G.; Huo, Y. F.; Luo, Y. C.; Zhang, L. H.; Wan, Y.; Nan, B.; Cao, L. J.; Wang, Z. Y.; Li, M. C. et al. Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci. China Mater. 2017, 60, 654–663.CrossRefGoogle Scholar
  6. [6]
    Wang, Q.; Zhou, Z. Y.; Lai, Y. J.; You, Y.; Liu, J. G.; Wu, X. L.; Terefe, E.; Chen, C.; Song, L.; Rauf, M. et al. Phenylenediamine-based FeNx/C catalyst with high activity for oxygen reduction in acid medium and its active-site probing. J. Am. Chem. Soc. 2014, 136, 10882–10885.CrossRefGoogle Scholar
  7. [7]
    Wang, J.; Li, L. Q.; Chen, X. L.; Lu, Y.; L. Yang, W. S.; Duan X. A Co-N/C hollow-sphere electrocatalyst derived from a metanilic CoAl layered double hydroxide for the oxygen reduction reaction, and its active sites in various pH media. Nano Res. 2017, 10, 2508–2518.CrossRefGoogle Scholar
  8. [8]
    Jing, H. Y.; Song, X. D.; Ren, S. Z.; Shi, Y. T.; An, Y. L.; Yang, Y.; Feng, M. Q.; Ma, S. B.; Hao, C. ZIF-67 derived nanostructures of Co/CoO and Co@N-doped graphitic carbon as counter electrode for highly efficient dye-sensitized solar cells. Electrochim. Acta 2016, 213, 252–259.CrossRefGoogle Scholar
  9. [9]
    Chen, M.; Zhao, G.; Shao, L.-L.; Yuan, Z.-Y.; Jing, Q.-S.; Huang, K.-J.; Huang, Z.-Y.; Zhao, X.-H.; Zou, G.-D. Controlled synthesis of nickel encapsulated into nitrogendoped carbon nanotubes with covalent bonded interfaces: The structural and electronic modulation strategy for an efficient electrocatalyst in dye-sensitized solar cells. Chem. Mater. 2017, 29, 9680–9694.CrossRefGoogle Scholar
  10. [10]
    Ma, X.; Zhao, X.; Huang, J. S.; Sun, L. T.; Li, Q.; Yang, X. R. Fine Co nanoparticles encapsulated in a N-doped porous carbon matrix with superficial N-doped porous carbon nanofibers for efficient oxygen reduction. ACS Appl. Mater. Interfaces 2017, 9, 21747–21755.CrossRefGoogle Scholar
  11. [11]
    Zhu, Q.-L.; Xia, W.; Zheng, L.-R.; Zou, R. Q.; Liu, Z.; Xu, Q. Atomically dispersed Fe/N-doped hierarchical carbon architectures derived from a metal-organic framework composite for extremely efficient electrocatalysis. ACS Energy Lett. 2017, 2, 504–511.CrossRefGoogle Scholar
  12. [12]
    Feng, S. Q.; Liu, C.; Chai, Z. G.; Li, Q.; Xu, D. S. Cobalt-based hydroxide nanoparticles@N-doping carbonic frameworks core–shell structures as highly efficient bifunctional electrocatalysts for oxygen evolution and oxygen reduction reactions. Nano Res. 2018, 11, 1482–1489.CrossRefGoogle Scholar
  13. [13]
    Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Cai, Q. R.; Vasileff, A.; Li, L. H.; Han, Y.; Chen, Y.; Qiao, S. Z. Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J. Am. Chem. Soc. 2017, 139, 3336–3339.CrossRefGoogle Scholar
  14. [14]
    Yan, D. F.; Guo, L.; Xie, C.; Wang, Y. Y.; Li, Y. X.; Li, H.; Wang, S. Y. N, P-dual doped carbon with trace Co and rich edge sites as highly efficient electrocatalyst for oxygen reduction reaction. Sci. China Mater. 2018, 61, 679–685.CrossRefGoogle Scholar
  15. [15]
    Zang, Y. P.; Zhang, H. M.; Zhang, X.; Liu, R. R.; Liu, S. W.; Wang, G. Z.; Zhang, Y. X.; Zhao, H. J. Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Nano Res. 2016, 9, 2123–2137.CrossRefGoogle Scholar
  16. [16]
    Sun, M.; Zhang, G.; Liu, H. J.; Liu, Y.; Li, J. H. α- and γ-Fe2O3 nanoparticle/nitrogen doped carbon nanotube catalysts for high-performance oxygen reduction reaction. Sci. China Mater. 2015, 58, 683–692.CrossRefGoogle Scholar
  17. [17]
    Xiao, J. W.; Xu, Y. Y.; Xia, Y. T.; Xi, J. B.; Wang, S. Ultra-small Fe2N nanocrystals embedded into mesoporous nitrogen doped graphitic carbon spheres as a highly active, stable, and methanol tolerant electrocatalyst for the oxygen reduction reaction. Nano Energy 2016, 24, 121–129.CrossRefGoogle Scholar
  18. [18]
    Shen, H. J.; Gracia-Espino, E.; Ma, J. Y.; Zang, K. T.; Luo, J.; Wang, L.; Gao, S. S.; Mamat, X.; Hu, G. Z.; Wagberg, T. et al. Synergistic effects between atomically dispersed Fe-N-C and C-S-C for the oxygen reduction reaction in acidic media. Angew. Chem., Int. Ed. 2017, 56, 13800–13804.CrossRefGoogle Scholar
  19. [19]
    Zhang, G. X.; Jin, X. Y.; Li, H. Y.; Wang, L.; Hu, C. J.; Sun, X. M. N-doped crumpled graphene: Bottom-up synthesis and its superior oxygen reduction performance. Sci. China Mater. 2016, 59, 337–347.Google Scholar
  20. [20]
    Liu, Z. Y.; Zhang, G. X.; Lu, Z. Y.; Jin, X. Y.; Chang, Z.; Sun, X. M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293–301.CrossRefGoogle Scholar
  21. [21]
    Wang, G.; Sun, Y. H.; Li, D. B.; Liang, H.-W.; Dong, R. H.; Feng, X. L.; Müllen, K. Controlled synthesis of N-doped carbon nanospheres with tailored mesopores through selfassembly of colloidal silica. Angew. Chem., Int. Ed. 2015, 54, 15191–15196.CrossRefGoogle Scholar
  22. [22]
    Liang, H. W.; Zhuang, X. D.; Brüller, S.; Feng X. L.; Müllen, K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 2014, 5, 4973.CrossRefGoogle Scholar
  23. [23]
    Liang, H. W.; Wei, W.; Wu, Z. S.; Feng X. L.; Müllen, K. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 16002–16005.CrossRefGoogle Scholar
  24. [24]
    Masa, J.; Xia, W.; Muhler, M.; Schuhmann, W. On the role of metals in nitrogen-doped carbon electrocatalysts for oxygen reduction. Angew. Chem., Int. Ed. 2015, 54, 10102–10120.CrossRefGoogle Scholar
  25. [25]
    Liu, D. B.; Wu, C. Q.; Chen, S. M.; Ding, S. Q.; Xie, Y. F.; Wang, C. D.; Wang, T.; Haleem, Y. A.; Rehman, Z.; Sang, Y. et al. In situ trapped high-density single metal atoms within graphene: Iron-containing hybrids as representatives for efficient oxygen reduction. Nano Res. 2018, 11, 2217–2228.CrossRefGoogle Scholar
  26. [26]
    Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.CrossRefGoogle Scholar
  27. [27]
    Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.CrossRefGoogle Scholar
  28. [28]
    Song, P.; Luo, M.; Liu, X. Z.; Xing, W.; Xu, W. L.; Jiang Z.; Gu, L. Zn single atom catalyst for highly efficient oxygen reduction reaction. Adv. Funct. Mater. 2017, 27, 1700802. DOI: 10.1002/adfm.201700802.CrossRefGoogle Scholar
  29. [29]
    Han, Y. H.; Wang, Y. G.; Chen, W. X.; Xu, R. R.; Zheng, L. R.; Zhang, J.; Luo, J.; Shen, R. A.; Zhu, Y. Q.; Cheong, W. C. et al. Hollow N-doped carbon spheres with isolated cobalt single atomic sites: Superior electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 2017, 139, 17269–17272.CrossRefGoogle Scholar
  30. [30]
    Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.CrossRefGoogle Scholar
  31. [31]
    Chen, P. Z.; Zhou, T. P.; Xing, L. L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L. D.; Yan, W. S.; Chu, W. S.; Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56, 610–614.CrossRefGoogle Scholar
  32. [32]
    Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Singleatom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.CrossRefGoogle Scholar
  33. [33]
    Wang, Y. L.; Zhu, C. Z.; Feng, S.; Shi, Q. R.; Fu, S. F.; Du, D.; Zhang, Q.; Lin, Y. H. Interconnected Fe, S, N-codoped hollow and porous carbon nanorods as efficient electrocatalysts for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 2017, 9, 40298–40306.CrossRefGoogle Scholar
  34. [34]
    Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627.CrossRefGoogle Scholar
  35. [35]
    Nicklass, A.; Dolg, M.; Stoll, H.; Preuss, H. Ab initio energy-adjusted pseudopotentials for the noble gases Ne through Xe: Calculation of atomic dipole and quadrupole polarizabilities. J. Chem. Phys. 1995, 102, 8942–8952.CrossRefGoogle Scholar
  36. [36]
    Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310.Google Scholar
  37. [37]
    Bondino, F.; Magnano, E.; Malvestuto, M.; Parmigiani, F.; McGuire, M. A.; Sefat, A. S.; Sales, B. C.; Jin, R.; Mandrus, D.; Plummer, E. W. et al. Evidence for strong itinerant spin fluctuations in the normal state of CeFeAsO0.89F0.11 ironoxypnictide superconductors. Phys. Rev. Lett. 2008, 101, 267001.CrossRefGoogle Scholar
  38. [38]
    Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.CrossRefGoogle Scholar
  39. [39]
    Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Konglin Wu
    • 1
    • 3
  • Xin Chen
    • 2
  • Shoujie Liu
    • 1
    • 3
  • Yuan Pan
    • 1
  • Weng-Chon Cheong
    • 1
  • Wei Zhu
    • 1
  • Xing Cao
    • 1
  • Rongan Shen
    • 1
  • Wenxing Chen
    • 1
  • Jun Luo
    • 4
  • Wensheng Yan
    • 5
  • Lirong Zheng
    • 6
  • Zheng Chen
    • 1
    Email author
  • Dingsheng Wang
    • 1
  • Qing Peng
    • 1
  • Chen Chen
    • 1
    Email author
  • Yadong Li
    • 1
  1. 1.Department of ChemistryTsinghua UniversityBeijingChina
  2. 2.Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of ChemistryUniversity of Science and Technology BeijingBeijingChina
  3. 3.College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, the Ministry of EducationAnhui Normal UniversityWuhuChina
  4. 4.Center for Electron MicroscopyTianjin University of TechnologyTianjinChina
  5. 5.National Synchrotron Radiation Laboratory (NSRL)University of Science and Technology of ChinaHefeiChina
  6. 6.Beijing Synchrotron Radiation Facility (NSRF), Institute of High Energy PhysicsChinese Academy of ScienceBeijingChina

Personalised recommendations