Advertisement

Self-immolative micellar drug delivery: The linker matters

  • Xuan Meng
  • Min Gao
  • Jian Deng
  • Di Lu
  • Aiping Fan
  • Dan Ding
  • Deling Kong
  • Zheng Wang
  • Yanjun Zhao
Research Article
  • 79 Downloads

Abstract

Redox-responsive polymer-drug conjugate micelles are excellent nanoscale vehicles for self-immolative intracellular drug delivery. To covalently connect the polymer and drug, disulfide-bearing linkers, such as 3,3’-dithiodipropionic acid (DDPA) and 4,4’-dithiodibutyric acid (DDBA), are used. In this paper, we report the influence of linker length on the therapeutic outcome of redox-sensitive conjugate micelles. Curcumin was selected as the model drug and it was conjugated to a multivalent methoxy poly(ethylene glycol)-polylysine copolymer with DDPA or DDBA as the linker. The obtained two polymer-curcumin conjugates were amphiphilic and could self-assemble into micelles that have a hydrodynamic diameter less than 100 nm. The loading of curcumin in both micelles was above 20% (w/w). Irrespective of the linker type, micelle disassembly was observed due to the collapse of the disulfide bond in a reducing environment. However, the rate of curcumin release was much faster with the DDBA linker than with the DDPA linker as the side product was a 5-membered ring with a low ring strain. The linker length-induced variation of curcumin release kinetics caused a significant difference in the intracellular drug concentration and a higher cytotoxicity was witnessed in three model cell lines (HeLa, PC3, and 4T1) for the micelles with a DDBA linker compared to those containing a DDPA linker. As expected, this phenomenon was also observed in HeLa tumor-bearing nude mice in vivo. The current work highlights the significance of linker length in engineering redox-responsive on-demand delivery systems.

Keywords

drug delivery micelles redox-responsive curcumin polymer-drug conjugate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2018_2134_MOESM1_ESM.pdf (1.7 mb)
Self-immolative micellar drug delivery: The linker matters

References

  1. [1]
    Hu, X. L.; Jing, X. B. Biodegradable amphiphilic polymerdrug conjugate micelles. Expert Opin. Drug Deliv. 2009, 6, 1079–1090.CrossRefGoogle Scholar
  2. [2]
    Yang, R. L.; Zhang, S.; Kong, D. L.; Gao, X. L.; Zhao, Y. J.; Wang, Z. Biodegradable polymer-curcumin conjugate micelles enhance the loading and delivery of low-potency curcumin. Pharm. Res. 2012, 29, 3512–3525.CrossRefGoogle Scholar
  3. [3]
    Lv, S. X.; Tang, Z. H.; Zhang, D. W.; Song, W. T.; Li, M. Q.; Lin, J.; Liu, H. Y.; Chen, X. S. Well-defined polymer-drug conjugate engineered with redox and pH-sensitive release mechanism for efficient delivery of paclitaxel. J. Control. Release 2014, 194, 220–227.CrossRefGoogle Scholar
  4. [4]
    Zhang, J. M.; Chen, R. E.; Fang, X. F.; Chen, F. Q.; Wang, Y. T.; Chen, M. W. Nucleolin targeting AS1411 aptamer modified pH-sensitive micelles for enhanced delivery and antitumor efficacy of paclitaxel. Nano Res. 2015, 8, 201–218.CrossRefGoogle Scholar
  5. [5]
    Peng, M. Y.; Qin, S. Y.; Jia, H. Z.; Zheng, D. W.; Rong, L.; Zhang, X. Z. Self-delivery of a peptide-based prodrug for tumor-targeting therapy. Nano Res. 2016, 9, 663–673.CrossRefGoogle Scholar
  6. [6]
    Shen, W. J.; Luan, J. B.; Cao, L. P.; Sun, J.; Yu, L.; Ding, J. D. Thermogelling polymer-platinum(IV) conjugates for long-term delivery of cisplatin. Biomacromolecules 2015, 16, 105–115.CrossRefGoogle Scholar
  7. [7]
    Sui, J. H.; Cui, Y.; Cai, H. X.; Bian, S. Q.; Xu, Z. Y.; Zhou, L.; Sun, Y.; Liang, J.; Fan, Y. J.; Zhang, X. D. Synergistic chemotherapeutic effect of sorafenib-loaded pullulan-Dox conjugate nanoparticles against murine breast carcinoma. Nanoscale 2017, 9, 2755–2767.CrossRefGoogle Scholar
  8. [8]
    Yu, Q. S.; Wei, Z. K.; Shi, J. Y.; Guan, S. L.; Du, N.; Shen, T.; Tang, H.; Jia, B.; Wang, F.; Gan, Z. H. Polymerdoxorubicin conjugate micelles based on poly(ethylene glycol) and poly(N-(2-hydroxypropyl) methacrylamide): Effect of negative charge and molecular weight on biodistribution and blood clearance. Biomacromolecules 2015, 16, 2645–2655.CrossRefGoogle Scholar
  9. [9]
    Gao, M.; Chen, C.; Fan, A. P.; Zhang, J.; Kong, D. L.; Wang, Z.; Zhao, Y. J. Covalent and non-covalent curcumin loading in acid-responsive polymeric micellar nanocarriers. Nanotechnology 2015, 26, 275101.CrossRefGoogle Scholar
  10. [10]
    Cao, Y. W.; Gao, M.; Chen, C.; Fan, A. P.; Zhang, J.; Kong, D. L.; Wang, Z.; Peer, D.; Zhao, Y. J. Triggered-release polymeric conjugate micelles for on-demand intracellular drug delivery. Nanotechnology 2015, 26, 115101.CrossRefGoogle Scholar
  11. [11]
    Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.CrossRefGoogle Scholar
  12. [12]
    Fleige, E.; Quadir, M. A.; Haag, R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv. Drug Deliv. Rev 2012, 64, 866–884.CrossRefGoogle Scholar
  13. [13]
    Riber, C. F.; Smith Anton, A. A.; Zelikin, A. N. Selfimmolative linkers literally bridge disulfide chemistry and the realm of thiol-free drugs. Adv. Healthc. Mater. 2015, 4, 1887–1890.CrossRefGoogle Scholar
  14. [14]
    Torchilin, V. P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev. Drug Discov. 2014, 13, 813–827.CrossRefGoogle Scholar
  15. [15]
    Wang, Z.; Chen, C.; Zhang, Q.; Gao, M.; Zhang, J.; Kong, D. L.; Zhao, Y. J. Tuning the architecture of polymeric conjugate to mediate intracellular delivery of pleiotropic curcumin. Eur. J. Pharm. Biopharm. 2015, 90, 53–62.CrossRefGoogle Scholar
  16. [16]
    Xiao, W. W.; Suby, N.; Xiao, K.; Lin, T. Y.; Al Awwad, N.; Lam, K. S.; Li, Y. P. Extremely long tumor retention, multiresponsive boronate crosslinked micelles with superior therapeutic efficacy for ovarian cancer. J. Control. Release 2017, 264, 169–179.CrossRefGoogle Scholar
  17. [17]
    Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008, 126, 187–204.CrossRefGoogle Scholar
  18. [18]
    Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.CrossRefGoogle Scholar
  19. [19]
    Such, G. K.; Yan, Y.; Johnston, A. P. R.; Gunawan, S. T.; Caruso, F. Interfacing materials science and biology for drug carrier design. Adv. Mater. 2015, 27, 2278–2297.CrossRefGoogle Scholar
  20. [20]
    Cheng, R.; Meng, F. H.; Deng, C.; Zhong, Z. Y. Bioresponsive polymeric nanotherapeutics for targeted cancer chemotherapy. Nano Today 2015, 10, 656–670.CrossRefGoogle Scholar
  21. [21]
    Zhu, Y. Q.; Zhang, J.; Meng, F. H.; Deng, C.; Cheng, R.; Feijen, J.; Zhong, Z. Y. cRGD-functionalized reductionsensitive shell-sheddable biodegradable micelles mediate enhanced doxorubicin delivery to human glioma xenografts in vivo. J. Control. Release 2016, 233, 29–38.CrossRefGoogle Scholar
  22. [22]
    Zhong, P.; Zhang, J.; Deng, C.; Cheng, R.; Meng, F. H.; Zhong, Z. Y. Glutathione-sensitive hyaluronic acid-SSmertansine prodrug with a high drug content: Facile synthesis and targeted breast tumor therapy. Biomacromolecules 2016, 17, 3602–3608.CrossRefGoogle Scholar
  23. [23]
    Qiu, J.; Cheng, R.; Zhang, J.; Sun, H. L.; Deng, C.; Meng, F. H.; Zhong, Z. Y. Glutathione-sensitive hyaluronic acidmercaptopurine prodrug linked via carbonyl vinyl sulfide: A robust and CD44-targeted nanomedicine for leukemia. Biomacromolecules 2017, 18, 3207–3214.CrossRefGoogle Scholar
  24. [24]
    Lu, H.; Wang, J.; Song, Z. Y.; Yin, L. C.; Zhang, Y. F.; Tang, H. Y.; Tu, C. L.; Lin, Y.; Cheng, J. J. Recent advances in amino acid ncarboxyanhydrides and synthetic polypeptides: Chemistry, self-assembly and biological applications. Chem. Commun. 2014, 50, 139–155.CrossRefGoogle Scholar
  25. [25]
    Kricheldorf, H. R. Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides. Angew. Chem., Int. Ed. 2006, 45, 5752–5784.CrossRefGoogle Scholar
  26. [26]
    Deming, T. J. Synthesis of side-chain modified polypeptides. Chem. Rev. 2016, 116, 786–808.CrossRefGoogle Scholar
  27. [27]
    Gao, M.; Deng, J.; Chu, H. Y.; Tang, Y.; Wang, Z.; Zhao, Y. J.; Li, G. H. Stereoselective stabilization of polymeric vitamin E conjugate micelles. Biomacromolecules 2017, 18, 4349–4356.CrossRefGoogle Scholar
  28. [28]
    Chen, C.; Tao, R.; Ding, D.; Kong, D. L.; Fan, A. P.; Wang, Z.; Zhao, Y. J. Ratiometric co-delivery of multiple chemodrugs in a single nanocarrier. Eur. J. Pharm. Sci. 2017, 107, 16–23.CrossRefGoogle Scholar
  29. [29]
    Li, H. Y.; Li, M.; Chen, C.; Fan, A. P.; Kong, D. L.; Wang, Z.; Zhao, Y. J. On-demand combinational delivery of curcumin and doxorubicin via a pH-labile micellar nanocarrier. Int. J. Pharm. 2015, 495, 572–578.CrossRefGoogle Scholar
  30. [30]
    Dong, X. P.; Guo, X. L.; Liu, G. Q.; Fan, A. P.; Wang, Z.; Zhao, Y. J. When self-assembly meets topology: An enhanced micelle stability. Chem. Commun. 2017, 53, 3822–3825.CrossRefGoogle Scholar
  31. [31]
    Torchilin, V. P. Micellar nanocarriers: Pharmaceutical perspectives. Pharm. Res. 2007, 24, 1–16.CrossRefGoogle Scholar
  32. [32]
    Shi, Y.; Lammers, T.; Storm, G.; Hennink, W. E. Physicochemical strategies to enhance stability and drug retention of polymeric micelles for tumor-targeted drug delivery. Macromol. Biosci. 2017, 17, 1660160.CrossRefGoogle Scholar
  33. [33]
    Park, K. Facing the truth about nanotechnology in drug delivery. ACS Nano 2013, 7, 7442–7447.CrossRefGoogle Scholar
  34. [34]
    Lv, S. X.; Wu, Y. C.; Cai, K. M.; He, H.; Li, Y. J.; Lan, M.; Chen, X. S.; Cheng, J. J.; Yin, L. C. High drug loading and sub-quantitative loading efficiency of polymeric micelles driven by donor-receptor coordination interactions. J. Am. Chem. Soc. 2018, 140, 1235–1238.CrossRefGoogle Scholar
  35. [35]
    Xin, K. T.; Li, M.; Lu, D.; Meng, X.; Deng, J.; Kong, D. L.; Ding, D.; Wang, Z.; Zhao, Y. J. Bioinspired coordination micelles integrating high stability, triggered cargo release, and magnetic resonance imaging. ACS Appl. Mater. Interfaces 2017, 9, 80–91.CrossRefGoogle Scholar
  36. [36]
    Owen, S. C.; Chan, D. P. Y.; Shoichet, M. S. Polymeric micelle stability. Nano Today 2012, 7, 53–65.CrossRefGoogle Scholar
  37. [37]
    Maeda, H. Macromolecular therapeutics in cancer treatment: The EPR Effect and beyond. J. Control. Release 2012, 164, 138–144.CrossRefGoogle Scholar
  38. [38]
    Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.CrossRefGoogle Scholar
  39. [39]
    Burns, J. A.; Butler, J. C.; Moran, J.; Whitesides, G. M. Selective reduction of disulfides by tris(2-carboxyethyl)phosphine. J. Org. Chem. 1991, 56, 2648–2650.CrossRefGoogle Scholar
  40. [40]
    Fava, A.; Iliceto, A.; Camera, E. Kinetics of the thiol-disulfide exchange. J. Am. Chem. Soc. 1957, 79, 833–838.CrossRefGoogle Scholar
  41. [41]
    Wang, X.; Li, J.; Yan, Q.; Chen, Y.; Fan, A.; Wang, Z.; Zhao, Y. In situ probing intracellular drug release from redox-responsive micelles by united FRET and AIE. Macromol. Biosci. 2018, 18, 1700339.CrossRefGoogle Scholar
  42. [42]
    Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.CrossRefGoogle Scholar
  43. [43]
    Li, X. D.; Gao, M.; Xin, K. T.; Zhang, L.; Ding, D.; Kong, D. L.; Wang, Z.; Shi, Y.; Kiessling, F.; Lammers, T. et al. Singlet oxygen-responsive micelles for enhanced photodynamic therapy. J. Control. Release 2017, 260, 12–21.CrossRefGoogle Scholar
  44. [44]
    Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J. M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018, 9, 1410.CrossRefGoogle Scholar
  45. [45]
    Shin, D. H.; Tam, Y. T.; Kwon, G. S. Polymeric micelle nanocarriers in cancer research. Front. Chem. Sci. Eng. 2016, 10, 348–359.CrossRefGoogle Scholar
  46. [46]
    Wang, Y. W.; Grainger, D. W. Barriers to advancing nanotechnology to better improve and translate nanomedicines. Front. Chem. Sci. Eng. 2014, 8, 265–275.CrossRefGoogle Scholar
  47. [47]
    Chen, C.; Zhao, J.; Gao, M.; Meng, X.; Fan, A. P.; Wang, Z.; Zhao, Y. J. Photo-triggered micelles: Simultaneous activation and release of microtubule inhibitors for on-demand chemotherapy. Biomater. Sci. 2018, 6, 511–518.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xuan Meng
    • 1
  • Min Gao
    • 1
  • Jian Deng
    • 1
  • Di Lu
    • 1
  • Aiping Fan
    • 1
  • Dan Ding
    • 2
    • 3
  • Deling Kong
    • 2
    • 3
  • Zheng Wang
    • 1
  • Yanjun Zhao
    • 1
  1. 1.School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjinChina
  2. 2.State Key Laboratory of Medicinal Chemical Biology (Nankai University)TianjinChina
  3. 3.Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai UniversityTianjinChina

Personalised recommendations