Advertisement

Nano Research

, Volume 11, Issue 12, pp 6167–6176 | Cite as

Background-free latent fingerprint imaging based on nanocrystals with long-lived luminescence and pH-guided recognition

  • Zhiheng Li
  • Qian Wang
  • Yingqian Wang
  • Qinqin Ma
  • Jie Wang
  • Zhihao Li
  • Yingxue Li
  • Xiaobo Lv
  • Wei Wei
  • Lang Chen
  • Quan Yuan
Research Article

Abstract

Latent fingerprints (LFPs) are highly specific to individuals, and LFP imaging has played an important role in areas such as forensic investigation and law enforcement. Presently, LFP imaging still faces considerable problems, including background interference and destructive and complex operations. Herein, we have designed a background-free, nondestructive, and easy-to-perform method for LFP imaging based on pH-mediated recognition of LFPs by carboxyl group-functionalized Zn2GeO4:Mn (ZGO:Mn-COOH) persistent luminescence nanorods (PLNRs). By simply adjusting the pH of the ZGO:Mn-COOH colloid dispersion to a certain acidic range, the negatively charged ZGO:Mn-COOH readily binds to protonated fingerprint ridges via electrostatic attraction. The ZGO:Mn-COOH colloid dispersion can be stored in portable commercial spray bottles, and the LFPs have been easily detected in situ by simply dropping the colloid dispersion on the LFPs. Moreover, since the ZGO:Mn-COOH can remain luminescent after excitation ceases, background color and background fluorescence interference were efficiently removed by simply capturing the luminescent LFP images after the excitation ceased. The entire LFP imaging process can be easily conducted without any destructive or complex operations. Due to the great versatility of the developed method for LFP imaging, clear LFP images with well-resolved ridge patterns were obtained. The designed background-free, nondestructive, and easy-to-perform LFP imaging strategy has great potential for future applications, such as forensic investigations and law enforcement.

Keywords

fingerprint persistent luminescence background interference nanoparticle imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21675120), the National Key R&D Program of China (No. 2017YFA0208000), the National Basic Research Program of China (973 Program, No. 2015CB932600), the Open Funding Project of the State Key Laboratory of Biochemical Engineering (No. 4102010299) and the Fundamental Research Funds for the Central Universities (No. 2042017kf0210). Q. Y. thanks the large-scale instrument and equipment sharing foundation of Wuhan University.

Supplementary material

12274_2018_2133_MOESM1_ESM.pdf (4.3 mb)
Background-free latent fingerprint imaging based on nanocrystals with long-lived luminescence and pHguided recognition

References

  1. [1]
    Wu, P.; Xu, C. Y.; Hou, X. D.; Xu, J. J.; Chen, H. Y. Dual-emitting quantum dot nanohybrid for imaging of latent fingerprints: Simultaneous identification of individuals and traffic light-type visualization of TNT. Chem. Sci. 2015, 6, 4445–4450.CrossRefGoogle Scholar
  2. [2]
    He, Y. Y.; Xu, L. R.; Zhu, Y.; Wei, Q. H.; Zhang, M. Q.; Su, B. Immunological multimetal deposition for rapid visualization of sweat fingerprints. Angew. Chem., Int. Ed. 2014, 53, 12609–12612.Google Scholar
  3. [3]
    Li, K.; Qin, W. W.; Li, F.; Zhao, X. C.; Jiang, B. W.; Wang, K.; Deng, S. H.; Fan, C. H.; Li, D. Nanoplasmonic imaging of latent fingerprints and identification of cocaine. Angew. Chem., Int. Ed. 2013, 52, 11542–11545.CrossRefGoogle Scholar
  4. [4]
    Ran, X.; Wang, Z. Z.; Zhang, Z. J.; Pu, F.; Ren, J. S.; Qu, X. G. Nucleic-acid-programmed Ag-nanoclusters as a generic platform for visualization of latent fingerprints and exogenous substances. Chem. Commun. 2016, 52, 557–560.CrossRefGoogle Scholar
  5. [5]
    Wang, J.; Ma, Q. Q.; Liu, H. Y.; Wang, Y. Q.; Shen, H. J.; Hu, X. X.; Ma, C.; Yuan, Q.; Tan, W. H. Time-gated imaging of latent fingerprints and specific visualization of protein secretions via molecular recognition. Anal. Chem. 2017, 89, 12764–12770.CrossRefGoogle Scholar
  6. [6]
    Su, B. Recent progress on fingerprint visualization and analysis by imaging ridge residue components. Anal. Bioanal. Chem. 2016, 408, 2781–2791.CrossRefGoogle Scholar
  7. [7]
    Lee, H. C.; Gaensslen, R. E. Advances in Fingerprint Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2001.CrossRefGoogle Scholar
  8. [8]
    Peng, T. H.; Qin, W. W.; Wang, K.; Shi, J. Y.; Fan, C. H.; Li, D. Nanoplasmonic imaging of latent fingerprints with explosive RDX residues. Anal. Chem. 2015, 87, 9403–9407.CrossRefGoogle Scholar
  9. [9]
    Song, K.; Huang, P.; Yi, C. L.; Ning, B.; Hu, S.; Nie, L. M.; Chen, X. Y.; Nie, Z. H. Photoacoustic and colorimetric visualization of latent fingerprints. ACS Nano 2015, 9, 12344–12348.CrossRefGoogle Scholar
  10. [10]
    Xu, L. R.; Li, Y.; Wu, S. Z.; Liu, X. H.; Su, B. Imaging latent fingerprints by electrochemiluminescence. Angew. Chem., Int. Ed. 2012, 124, 8192–8196.CrossRefGoogle Scholar
  11. [11]
    Tang, X. M.; Huang, L. L.; Zhang, W. Y.; Zhong, H. Y. Chemical imaging of latent fingerprints by mass spectrometry based on laser activated electron tunneling. Anal. Chem. 2015, 87, 2693–2701.CrossRefGoogle Scholar
  12. [12]
    Chen, H. B.; Chang, K. W.; Men, X. J.; Sun, K.; Fang, X. F.; Ma, C.; Zhao, Y. X.; Yin, S. Y.; Qin, W. P.; Wu, C. F. Covalent patterning and rapid visualization of latent fingerprints with photo-cross-linkable semiconductor polymer dots. ACS Appl. Mater. Interfaces 2015, 7, 14477–14484.CrossRefGoogle Scholar
  13. [13]
    Cui, J. B.; Xu, S. Y.; Guo, C.; Jiang, R.; James, T. D.; Wang, L. Y. Highly efficient photothermal semiconductor nanocomposites for photothermal imaging of latent fingerprints. Anal. Chem. 2015, 87, 11592–11598.CrossRefGoogle Scholar
  14. [14]
    Hazarika, P.; Jickells, S. M.; Wolff, K.; Russell, D. A. Imaging of latent fingerprints through the detection of drugs and metabolites. Angew. Chem., Int. Ed. 2008, 47, 10167–10170.CrossRefGoogle Scholar
  15. [15]
    Brunelle, E.; Huynh, C.; Le, A. M.; Halámková, L.; Agudelo, J.; Halámek, J. New horizons for ninhydrin: Colorimetric determination of gender from fingerprints. Anal. Chem. 2016, 88, 2413–2420.CrossRefGoogle Scholar
  16. [16]
    Xu, C. Y.; Zhou, R. H.; He, W. W.; Wu, L.; Wu, P.; Hou, X. D. Fast imaging of eccrine latent fingerprints with nontoxic Mn-doped ZnS QDs. Anal. Chem. 2014, 86, 3279–3283.CrossRefGoogle Scholar
  17. [17]
    Chen, X.; Xu, W.; Zhang, L. H.; Bai, X.; Cui, S. B.; Zhou, D. L.; Yin, Z.; Song, H. W.; Kim, D. H. Large upconversion enhancement in the “islands” Au–Ag alloy/NaYF4:Yb3+, Tm3+/Er3+ composite films, and fingerprint identification. Adv. Funct. Mater. 2015, 25, 5462–5471.CrossRefGoogle Scholar
  18. [18]
    Xu, L. R.; Zhang, C. Z.; He, Y. Y.; Su, B. Advances in the development and component recognition of latent fingerprints. Sci. China Chem. 2015, 58, 1090–1096.CrossRefGoogle Scholar
  19. [19]
    Wang, J.; Wei, T.; Li, X. Y.; Zhang, B. H.; Wang, J. X.; Huang, C.; Yuan, Q. Near-infrared-light-mediated imaging of latent fingerprints based on molecular recognition. Angew. Chem., Int. Ed. 2014, 53, 1616–1620.CrossRefGoogle Scholar
  20. [20]
    Ramotowski, R. Lee and Gaensslen’s Advances in Fingerprint Technology, 3rd ed.; CRC press: Boca Raton, FL, USA, 2012.CrossRefGoogle Scholar
  21. [21]
    Menzel, E. R. Recent advances in photoluminescence detection of fingerprints. Sci. World J. 2001, 1, 498–509.CrossRefGoogle Scholar
  22. [22]
    Frick, A. A.; Busetti, F.; Cross, A.; Lewis, S. W. Aqueous Nile blue: A simple, versatile and safe reagent for the detection of latent fingermarks. Chem. Commun. 2014, 50, 3341–3343.CrossRefGoogle Scholar
  23. [23]
    Li, Y.; Xu, L. R.; Su, B. Aggregation induced emission for the recognition of latent fingerprints. Chem. Commun. 2012, 48, 4109–4111.CrossRefGoogle Scholar
  24. [24]
    Li, Z. J.; Zhang, Y. W.; Wu, X.; Huang, L.; Li, D. S.; Fan, W.; Han, G. Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable nearinfrared persistent luminescence. J. Am. Chem. Soc. 2015, 137, 5304–5307.CrossRefGoogle Scholar
  25. [25]
    Wang, J.; Ma, Q. Q.; Zheng, W.; Liu, H. Y.; Yin, C. Q.; Wang, F. B.; Chen, X. Y.; Yuan, Q.; Tan, W. H. Onedimensional luminous nanorods featuring tunable persistent luminescence for autofluorescence-free biosensing. ACS Nano 2017, 11, 8185–8191.CrossRefGoogle Scholar
  26. [26]
    Wu, B. Y.; Wang, H. F.; Chen, J. T.; Yan, X. P. Fluorescence resonance energy transfer inhibition assay for a-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles. J. Am. Chem. Soc. 2011, 133, 686–688.CrossRefGoogle Scholar
  27. [27]
    Wu, S. Q.; Yang, C. X.; Yan, X. P. A dual-functional persistently luminescent nanocomposite enables engineering of mesenchymal stem cells for homing and gene therapy of glioblastoma. Adv. Funct. Mater. 2017, 27, 1604992.CrossRefGoogle Scholar
  28. [28]
    le Masne de Chermont, Q.; Chanéac, C.; Seguin, J.; Pellé, F.; Maîtrejean, S.; Jolivet, J. P.; Gourier, D.; Bessodes, M.; Scherman, D. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA 2007, 104, 9266–9271.CrossRefGoogle Scholar
  29. [29]
    Wang, J.; Ma, Q. Q.; Wang, Y. Q.; Shen, H. J.; Yuan, Q. Recent progress in biomedical applications of persistent luminescence nanoparticles. Nanoscale 2017, 9, 6204–6218.CrossRefGoogle Scholar
  30. [30]
    Liu, H. Y.; Hu, X. X.; Wang, J.; Liu, M.; Wei, W.; Yuan, Q. Direct low-temperature synthesis of ultralong persistent luminescence nanobelts based on a biphasic solutionchemical reaction. Chin. Chem. Lett., in press, DOI: 10.1016/j.cclet.2018.02.005.Google Scholar
  31. [31]
    Li, N.; Diao, W.; Han, Y. Y.; Pan, W.; Zhang, T. T.; Tang, B. MnO2-modified persistent luminescence nanoparticles for detection and imaging of glutathione in living cells and in vivo. Chem.—Eur. J. 2014, 20, 16488–16491.CrossRefGoogle Scholar
  32. [32]
    Chen, L. J.; Yang, C. X.; Yan, X. P. Liposome-coated persistent luminescence nanoparticles as luminescence trackable drug carrier for chemotherapy. Anal. Chem. 2017, 89, 6936–6939.CrossRefGoogle Scholar
  33. [33]
    Wang, J.; Ma, Q. Q.; Hu, X. X.; Liu, H. Y.; Zheng, W.; Chen, X. Y.; Yuan, Q.; Tan, W. H. Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence. ACS Nano 2017, 11, 8010–8017.CrossRefGoogle Scholar
  34. [34]
    Abdukayum, A.; Chen, J. T.; Zhao, Q.; Yan, X. P. Functional near infrared-emitting Cr3+/Pr3+ Co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 2013, 135, 14125–14133.CrossRefGoogle Scholar
  35. [35]
    Abdukayum, A.; Yang, C. X.; Zhao, Q.; Chen, J. T.; Dong, L. X.; Yan, X. P. Gadolinium Complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo. Anal. Chem. 2014, 86, 4096–4101.CrossRefGoogle Scholar
  36. [36]
    Li, Z. J.; Huang, L.; Zhang, Y. W.; Zhao, Y.; Yang, H.; Han, G. Near-infrared light activated persistent luminescence nanoparticles via upconversion. Nano Res. 2017, 10, 1840–1846.CrossRefGoogle Scholar
  37. [37]
    Wang, Y.; Yang, C. X.; Yan, X. P. Hydrothermal and biomineralization synthesis of a dual-modal nanoprobe for targeted near-infrared persistent luminescence and magnetic resonance imaging. Nanoscale 2017, 9, 9049–9055.CrossRefGoogle Scholar
  38. [38]
    Song, L.; Li, P. P.; Yang, W.; Lin, X. H.; Liang, H.; Chen, X. F.; Liu, G.; Li, J.; Yang, H. H. Low-dose X-ray activation of W(VI)-doped persistent luminescence nanoparticles for deep-tissue photodynamic therapy. Adv. Funct. Mater. 2018, 28, 1707496.CrossRefGoogle Scholar
  39. [39]
    Zou, R.; Huang, J. J.; Shi, J. P.; Huang, L.; Zhang, X. J.; Wong, K. L.; Zhang, H. W.; Jin, D. Y.; Wang, J.; Su, Q. Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence. Nano Res. 2017, 10, 2070–2082.CrossRefGoogle Scholar
  40. [40]
    Stauffer, E.; Becue, A.; Singh, K. V.; Thampi, K. R.; Champod, C.; Margot, P. Single-metal deposition (SMD) as a latent fingermark enhancement technique: An alternative to multimetal deposition (MMD). Forensic Sci. Int. 2007, 168, e5–e9.CrossRefGoogle Scholar
  41. [41]
    Choi, M. J.; McDonagh, A. M.; Maynard, P.; Roux, C. Metal-containing nanoparticles and nano-structured particles in fingermark detection. Forensic Sci. Int. 2008, 179, 87–97.CrossRefGoogle Scholar
  42. [42]
    Moret, S.; Bécue, A.; Champod, C. Functionalised silicon oxide nanoparticles for fingermark detection. Forensic Sci. Int. 2016, 259, 10–18.CrossRefGoogle Scholar
  43. [43]
    Song, L.; Lin, X. H.; Song, X. R.; Chen, S.; Chen, X. F.; Li, J.; Yang, H. H. Repeatable deep-tissue activation of persistent luminescent nanoparticles by soft X-ray for high sensitivity long-term in vivo bioimaging. Nanoscale 2017, 9, 2718–2722.CrossRefGoogle Scholar
  44. [44]
    Zhou, Z. H.; Zheng, W.; Kong, J. T.; Liu, Y.; Huang, P.; Zhou, S. Y.; Chen, Z.; Shi, J. L.; Chen, X. Y. Rechargeable and LED-activated ZnGa2O4:Cr3+ near-infrared persistent luminescence nanoprobes for background-free biodetection. Nanoscale 2017, 9, 6846–6853.CrossRefGoogle Scholar
  45. [45]
    Lin, X. H.; Song, L.; Chen, S.; Chen, X. F.; Wei, J. J.; Li, J. Y.; Huang, G. M.; Yang, H. H. Kiwifruit-like persistent luminescent nanoparticles with high-performance and in situ activable near-infrared persistent luminescence for long-term in vivo bioimaging. ACS Appl. Mater. Interfaces 2017, 9, 41181–41187.CrossRefGoogle Scholar
  46. [46]
    Li, N.; Li, Y. H.; Han, Y. Y.; Pan, W.; Zhang, T. T.; Tang, B. A highly selective and instantaneous nanoprobe for detection and imaging of ascorbic acid in living cells and in vivo. Anal. Chem. 2014, 86, 3924–3930.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhiheng Li
    • 1
  • Qian Wang
    • 1
  • Yingqian Wang
    • 1
  • Qinqin Ma
    • 1
  • Jie Wang
    • 1
  • Zhihao Li
    • 1
  • Yingxue Li
    • 1
  • Xiaobo Lv
    • 1
  • Wei Wei
    • 2
  • Lang Chen
    • 3
  • Quan Yuan
    • 1
  1. 1.Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular SciencesWuhan UniversityWuhanChina
  2. 2.State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingChina
  3. 3.School of Basic Medical SciencesWuhan UniversityWuhanChina

Personalised recommendations